
A Fast Matheuristic for Two-
Stage Stochastic Programs
through Supervised Learning

ERIC LARSEN, EMMA FREJINGER,
BERNARD GENDRON AND ANDREA LODI

ELLIIT focus period workshop:
Hybrid AI – Where data-driven and model-based methods
meet

November 1, 2022

arXiv:2205.00897

2

The Economist, March 15th 2020 The Economist, January 14th 2022

Characteristics of many decision-making problems related to freight transportation:

Large-scale discrete optimization problems

Subject to uncertainty

Similar problem instances solved repeatedly over time © Emma Frejinger

3

INTERACTDECIDEOPTIMIZEPREDICT

Forecast Solution Execution

Delage, Adulyasak, Frejinger (2021)

Decision-making process, traditionally
deterministic models and done in silos

Data

Prediction from data
mainly from
supervised learning
based on traditional
prediction objectives

Deterministic models
leveraging point
predictions

Actual decision
making based on
suggested solutions
(human in the loop)

Implementation in a
physical environment

© Emma Frejinger

4

INTERACTDECIDEOPTIMIZEPREDICT

Forecast Solution Execution

Delage, Adulyasak, Frejinger (2021)

Pervasive issues arise when facing uncertainty

Data

Point predictions lead
to unexplained
variations
Nature rarely follows a
“nice” distribution

Deterministic models
only control one
scenario of the future
Solving stochastic
models is challenging

Decision maker is not
risk neutral
Stochastic models are
over simplified or too
obscure

The past does not
predict the future
Post-decision
disappointment

© Emma Frejinger

5

INTERACTDECIDEOPTIMIZEPREDICT

Forecast Solution Execution

Delage, Adulyasak, Frejinger (2021)

Endogeneity perturbs the entire decision-making
process

Data

Statistical vs. causal
dependencies

Optimization under
decision-dependent
uncertainty is extra
challenging

Challenging trade-offs
between exploration
and exploitation

Decisions bring the
environment in states
for which we have no
data

© Emma Frejinger

6

INTERACTDECIDEOPTIMIZEPREDICT

Forecast Execution

Delage, Adulyasak, Frejinger (2021)
Data

Point predictions lead
to unexplained
variations
Nature rarely follows a
“nice” distribution

Deterministic models
only control one
scenario of the future
Solving stochastic
models is challenging

The past does not
predict the future
Post-decision
disappointment

Decision maker is not
risk neutral
Stochastic models are
over simplified or too
obscure

Solution

© Emma Frejinger

ꋉ2022 N. Yorke-Smith

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder:

End-to-End Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482

CO-augmented ML CO model
acquisition

Decision focussed
learning

Matheuristic

© Emma Frejinger

1
OUTLINE

2
3

8

Motivation and scope
Integer linear two-stage stochastic programs with hard second-stage
problems

ML-L-Shaped: replace costly computations in the L-shaped method by
ML predictions

Extensive numerical study: ML-L-Shaped gives a speedup of x6 to x167
compared to the best performing exact method
Optimality gaps close to zero4

Background
Can we predict useful (expected) information about second-stage
problems in two-stage formulations?

© Emma Frejinger

9

1 Can we predict useful (expected) information about second-
stage problems in two-stage formulations?

‣ Problem: quickly predict expected descriptions of second-
stage problem solutions (synthesis of a solution)
conditional on first-stage variables

‣ Data: large number of (sampled) deterministic second-
stage problems solved independently and offline

‣ Supervised learning: examples — available information on
instance and synthesized solution

© Emma Frejinger

10

1 Can we predict useful (expected) information about second-
stage problems in two-stage formulations?

x = [xa, xu]

Pr
ob

le
m

in

st
an

ce
y*(x) = arg min

y∈Y(x)
C(xa, xu , y)

O
pe

ra
tio

na
l

so
lu

tio
n

ȳ*(xa) = g1(y*(xa, xu))

Ta
ct

ic
al

so

lu
tio

n
1

Ta
ct

ic
al

so

lu
tio

n
2

ȳ*(xa) = g2(y*(xa, xu))

© Emma Frejinger

11

1 Can we predict useful (expected) information about second-
stage problems in two-stage formulations?

‣ Prediction accuracy close lower bounds computed using
sample average approximation

‣ Predictions generated in millisecondsYES

© Emma Frejinger

12

1
‣ Predictions useful for real-time applications or as part

of another algorithm (solve two/multi-stage problem)
‣ Avoids online generation of multiple second-stage

scenarios and solutions
‣ Easy to implement in practice (standard supervised

learning and a general purpose solver)

WHY DO
WE
CARE?

CURIOUS?

Can we predict useful (expected) information about second-
stage problems in two-stage formulations? Yes.

Predicting Tactical Solutions to Operational Planning Problems
Under Imperfect Information, IJOC 34(1):227-242, 2021.

ERIC LARSEN, SÉBASTIEN LACHAPELLE, YOSHUA BENGIO,
EMMA FREJINGER, SIMON LACOSTE-JULIEN AND
ANDREA LODI

© Emma Frejinger

2
13

Motivation and scope
Integer linear two-stage stochastic programs with hard
second-stage problems

© Emma Frejinger

SCOPE

‣ Two-stage stochastic programming

‣ E.g., tactical planning with second-stage
operational planning problem (relatively
complete recourse)

‣ Costly integer second-stage problems

‣ High level of uncertainty — large number of
scenarios

General two-stage linear stochastic program
(notation follows e.g. Angulo et al., 2016)

min
x,z,✓

{cx+ dz + ✓} (1)

s.t. Ax+ Cz b, (2)
Q(x)� ✓ 0, (3)
x 2 {0, 1}n, (4)
z � 0, z 2 Z, (5)

(Z may embody integrality constraints and a number of additional constraints
pertaining to z only.)

Q(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 Y}]. (6)

(Y may embody integrality constraints and a number of additional constraints
pertaining to y only.)

Benders decomposition
In the exact and approximate Benders decomposition algorithms of Section 3,
(6) is the (second stage) subproblem (S). We shall also need to refer to the
primal continuous relaxation of S (RS):

eQ(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 eY}], (7)

where eY is equal to Y except for the removal of every integrality constraint, and
to the dual of RS (RSD):

E⇠[min
�⇠,✏⇠

{�⇠(h⇠ � T⇠x)� 10✏⇠ : �⇠W � ✏⇠ q⇠, �⇠ � 0, ✏⇠ � 0}]. (8)

The master (first stage) problem (M) is as follows:

min
x,z,✓

{cx+ dz + ✓} (9)

s.t.

Ax+ Cz b, (10)

x 2 {0, 1}n, (11)

z � 0, z 2 Z (12)

⇧x� 1✓ ⇡0, (13)

✓ � L (14)

where L is a lower bound on Q(x), x 2 X , and X is the projection of (2),
(3), (5), (6) on {0, 1}n.

5

min
x,z,✓

{cx+ dz + ✓} (1)

s.t. Ax+ Cz b, (2)
Q(x)� ✓ 0, (3)
x 2 {0, 1}n, (4)
z � 0, z 2 Z, (5)

(Z may embody integrality constraints and a number of additional constraints
pertaining to z only.)

Q(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 Y}]. (6)

(Y may embody integrality constraints and a number of additional constraints
pertaining to y only.)

Benders decomposition
In the exact and approximate Benders decomposition algorithms of Section 3,
(6) is the (second stage) subproblem (S). We shall also need to refer to the
primal continuous relaxation of S (RS):

eQ(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 eY}], (7)

where eY is equal to Y except for the removal of every integrality constraint, and
to the dual of RS (RSD):

E⇠[min
�⇠,✏⇠

{�⇠(h⇠ � T⇠x)� 10✏⇠ : �⇠W � ✏⇠ q⇠, �⇠ � 0, ✏⇠ � 0}]. (8)

The master (first stage) problem (M) is as follows:

min
x,z,✓

{cx+ dz + ✓} (9)

s.t.

Ax+ Cz b, (10)

x 2 {0, 1}n, (11)

z � 0, z 2 Z (12)

⇧x� 1✓ ⇡0, (13)

✓ � L (14)

where L is a lower bound on Q(x), x 2 X , and X is the projection of (2),
(3), (5), (6) on {0, 1}n.

5

Second-stage cost of with respect to
random data with finite support

x
ξ = (qξ, Wξ, Tξ, hξ)

14

Integrality constraints on y

min
x,z,✓

{cx+ dz + ✓}

s.t. Ax+ Cz b, (1)
Q(x)� ✓ 0, (2)
x 2 {0, 1}n, (3)
z � 0, z 2 Z, (4)

(Z may embody integrality constraints and a number of additional constraints
pertaining to z only.)

Q(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 Y}]. (5)

(Y may embody integrality constraints and a number of additional constraints
pertaining to y only.)

Benders decomposition
In the exact and approximate Benders decomposition algorithms of Section 3,
(5) is the (second stage) subproblem (S). We shall also need to refer to the
primal continuous relaxation of S (RS):

eQ(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 eY}], (6)

where eY is equal to Y except for the removal of every integrality constraint, and
to the dual of RS (RSD):

E⇠[min
�⇠,✏⇠

{�⇠(h⇠ � T⇠x)� 10✏⇠ : �⇠W � ✏⇠ q⇠, �⇠ � 0, ✏⇠ � 0}]. (7)

The master (first stage) problem (M) is as follows:

min
x,z,✓

{cx+ dz + ✓}

s.t. (1), (3), (4),

⇧x� 1✓ ⇡0, (8)
✓ � L (9)

where L is a lower bound on Q(x), x 2 X , and X is the projection of (1),
(2), (4), (5) on {0, 1}n.

The set of constraints in (8) is initially (i.e., at root node) empty (unless
initial cuts have been added, for instance, in a multi-phase solution process),
and progressively populated with optimality cuts as the Benders-type branch
and cut algorithm advances. X will be further restricted through the branching
and cutting process operating on (M). We assume that (S) and (RS) feature
relatively complete recourse and that none of the first stage constraints appear-
ing in (1) and (4) have been relaxed in (M). Hence, no feasibility cut shall need
to be applied during the solution process. At x⇤ : x⇤ 2 {0, 1}n, the exact inte-
ger L-shaped optimality cut (Laporte and Louveaux, 1993, Eq. (10)) and the

5

= ∑
ξ

pξQξ(x)

© Emma Frejinger

RELATED WORK
‣ Exact methods

‣ Integer L-shaped method (Laporte and
Louveaux, 1993)

‣ L-shaped method with alternating cut strategy
(Angulo et al., 2016) Avoid costly
computations of by first checking
feasibility, if infeasible add subgradient cut

‣ Heuristics, e.g.,

‣ Progressive hedging (Rockafellar and Wets,
1991, Watson and Woodruff, 2011)

‣ Dual decomposition (Carøe and Schultz, 1999)

‣ Neur2SP (Dumouchelle et al., 2022)

Q(x)

15

Integer L-shaped optimality cut at where
 and lower bound on

x*
S(x*) := {i : x*i = 1} L Q(x*)

The set of constraints in (13) is initially (i.e., at root node) empty (unless
initial cuts have been added, for instance, in a multi-phase solution process),
and progressively populated with optimality cuts as the Benders-type branch
and cut algorithm advances. X will be further restricted through the branching
and cutting process operating on (M). We assume that (S) and (RS) feature
relatively complete recourse and that none of the first stage constraints appear-
ing in (2) and (5) have been relaxed in (M). Hence, no feasibility cut shall need
to be applied during the solution process. At x⇤ : x⇤ 2 {0, 1}n, the exact inte-
ger L-shaped optimality cut (Laporte and Louveaux, 1993, Eq. (10)) and the
exact continuous L-shaped (i.e. subgradient) optimality mono-cut (Birge and
Louveaux, 2011, pp. 183-184) are respectively defined by

(Q(x⇤)� L)
⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+Q(x⇤) ✓, (15)

where S(x⇤) :⌘ {i : x⇤
i = 1}, and by

E⇠[�⇠(h⇠ � T⇠x)� 10✏⇠] ✓, (16)

where �⇠, ✏⇠ are solutions to (8) at x⇤.

3 Exact and approximate Benders decomposition

algorithms

We consider two algorithms for the purpose of solving the problem delineated
in Section 2. Both are based on Benders decomposition and each one is special-
ized into an exact and an approximate, ML-assisted version. Upon termination,
the exact versions yield accurate solutions and the approximate versions yield
feasible solutions. We indicate how responsibilities are divided between the com-
puting application, the solver and the solver callback. Namely, we distinguish
operations that are directed by the computing application and occurring outside
the reach of the solver, operations that are performed automatically through the
internal workings of the solver and operations that, while occurring inside the
reach of the solver, are determined by the callback. These details make it easier
to define possible modifications and assess their practicality.

3.1 Algorithm I: integer L-shaped cuts only
This algorithm exclusively applies integer L-shaped optimality cuts (Laporte
and Louveaux, 1993). Given the value of a candidate integral first stage solution,
the exact version of the algorithm calculates the optimal expected objective
value of second stage exactly. Based on the latter, an integer L-shaped cut
is calculated and is added to the first stage problem if it is binding. This
exact version of Algorithm I is essentially that called Std-Std in AA. In the
approximate, ML-assisted version of Algorithm I, the exact optimal expected
objective value of second stage is substituted with a prediction supplied by a
pre-trained ML approximator.

Let UB denote the current upper bound for the solution of (P) and (x⇤⇤, ✓⇤⇤)
denote the current incumbent solution. These are updated internally by the
algorithm.

6

Subgradient cut given by continuous relaxation
 of Q̃(x) Q(x)

s(x − x*) + Q̃(x*) ≤ θ
Subgradient of at s Q̃(x) x*

Master (first-stage) problem

min
x,z,✓

{cx+ dz + ✓}

s.t. Ax+ Cz b, (1)
Q(x)� ✓ 0, (2)
x 2 {0, 1}n, (3)
z � 0, z 2 Z, (4)

(Z may embody integrality constraints and a number of additional constraints
pertaining to z only.)

Q(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 Y}]. (5)

(Y may embody integrality constraints and a number of additional constraints
pertaining to y only.)

Benders decomposition
In the exact and approximate Benders decomposition algorithms of Section 3,
(5) is the (second stage) subproblem (S). We shall also need to refer to the
primal continuous relaxation of S (RS):

eQ(x) :⌘ E⇠[min
y

{q⇠y : W⇠y � h⇠ � T⇠x, y 2 eY}], (6)

where eY is equal to Y except for the removal of every integrality constraint, and
to the dual of RS (RSD):

E⇠[min
�⇠,✏⇠

{�⇠(h⇠ � T⇠x)� 10✏⇠ : �⇠W � ✏⇠ q⇠, �⇠ � 0, ✏⇠ � 0}]. (7)

The master (first stage) problem (M) is as follows:

min
x,z,✓

{cx+ dz + ✓}

s.t. (1), (3), (4),

⇧x� 1✓ ⇡0, (8)
✓ � L (9)

where L is a lower bound on Q(x), x 2 X , and X is the projection of (1),
(2), (4), (5) on {0, 1}n.

The set of constraints in (8) is initially (i.e., at root node) empty (unless
initial cuts have been added, for instance, in a multi-phase solution process),
and progressively populated with optimality cuts as the Benders-type branch
and cut algorithm advances. X will be further restricted through the branching
and cutting process operating on (M). We assume that (S) and (RS) feature
relatively complete recourse and that none of the first stage constraints appear-
ing in (1) and (4) have been relaxed in (M). Hence, no feasibility cut shall need
to be applied during the solution process. At x⇤ : x⇤ 2 {0, 1}n, the exact inte-
ger L-shaped optimality cut (Laporte and Louveaux, 1993, Eq. (10)) and the

5

© Emma Frejinger

3
16

ML-L-Shaped:
replace costly computations in the L-shaped method by ML
predictions

© Emma Frejinger

IDEA
‣ Solve problem instances stemming from a

distribution of instances sharing similar
characteristics

‣ Matheuristic

‣ L-shaped method with or without alternating
cuts

‣ Costly computations replaced by fast machine
learning predictions

17

Integer L-shaped optimality cut at candidate
solution where and
lower bound on

x* S(x*) := {i : x*i = 1} L
Q(x*)

Continuous L-shaped (subgradient) optimality
mono-cut (Birge and Louveaux, 2011)

 and are solutions to the dual of the
continuous relaxation of subproblem at
ϕ ψ

x*

Predictions

 Subproblem value

 Relaxed subproblem value

 Solutions and , respectively

Q(x*)
Q̃(x*)

ϕ ψ

exact continuous L-shaped (i.e. subgradient) optimality mono-cut (Birge and
Louveaux, 2011, pp. 183-184) are respectively defined by

(Q(x⇤)� L)
⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+Q(x⇤) ✓, (10)

where S(x⇤) :⌘ {i : x⇤
i = 1}, and by

E⇠[�(h⇠ � T⇠x)� 10] ✓, (11)

where �, are solutions to (7) at x⇤.

3 Exact and approximate Benders decomposition

algorithms

We consider two algorithms for the purpose of solving the problem delineated
in Section 2. Both are based on Benders decomposition and each one is special-
ized into an exact and an approximate, ML-assisted version. Upon termination,
the exact versions yield accurate solutions and the approximate versions yield
feasible solutions. We indicate how responsibilities are divided between the com-
puting application, the solver and the solver callback. Namely, we distinguish
operations that are directed by the computing application and occurring outside
the reach of the solver, operations that are performed automatically through the
internal workings of the solver and operations that, while occurring inside the
reach of the solver, are determined by the callback. These details make it easier
to define possible modifications and assess their practicality.

3.1 Algorithm I: integer L-shaped cuts only
This algorithm exclusively applies integer L-shaped optimality cuts (Laporte
and Louveaux, 1993). Given the value of a candidate integral first stage solution,
the exact version of the algorithm calculates the optimal expected objective
value of second stage exactly. Based on the latter, an integer L-shaped cut
is calculated and is added to the first stage problem if it is binding. This
exact version of Algorithm I is essentially that called Std-Std in AA. In the
approximate, ML-assisted version of Algorithm I, the exact optimal expected
objective value of second stage is substituted with a prediction supplied by a
pre-trained ML approximator.

Let UB denote the current upper bound for the solution of (P) and (x⇤⇤, ✓⇤⇤)
denote the current incumbent solution. These are updated internally by the
algorithm.

Step 1 Compute or retrieve the lower bound L for the objective value of (P).

Step 2 Initialize a branch and cut process equipped with a global node tree for
(M) with the solver. Set UB = 1. The repository of open nodes thus
created initially contains only the root node at which the constraint set
(8) is empty and the domain of x is free of branching constraints. (The
solver manages the initialization process automatically under default or
selected optional settings.)

6

Algorithm 3 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then

3: go to 10
4: end if

5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then

7: Add a heuristic continuous L-shaped mono-cut (11)
8: return

9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then

12: if cx⇤ + ✓⇤ < UB then

13: UB cx⇤ + ✓⇤ . Update upper bound
14: x⇤⇤ x⇤ . Update incumbent solution
15: return

16: end if

17: else

18: Add a heuristic integer L-shaped cut (10)
19: return

20: end if

21: return

22: end procedure

39

Algorithm 3 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then

3: go to 10
4: end if

5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then

7: Add a heuristic continuous L-shaped mono-cut (11)
8: return

9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then

12: if cx⇤ + ✓⇤ < UB then

13: UB cx⇤ + ✓⇤ . Update upper bound
14: x⇤⇤ x⇤ . Update incumbent solution
15: return

16: end if

17: else

18: Add a heuristic integer L-shaped cut (10)
19: return

20: end if

21: return

22: end procedure

39

The set of constraints in (13) is initially (i.e., at root node) empty (unless
initial cuts have been added, for instance, in a multi-phase solution process),
and progressively populated with optimality cuts as the Benders-type branch
and cut algorithm advances. X will be further restricted through the branching
and cutting process operating on (M). We assume that (S) and (RS) feature
relatively complete recourse and that none of the first stage constraints appear-
ing in (2) and (5) have been relaxed in (M). Hence, no feasibility cut shall need
to be applied during the solution process. At x⇤ : x⇤ 2 {0, 1}n, the exact inte-
ger L-shaped optimality cut (Laporte and Louveaux, 1993, Eq. (10)) and the
exact continuous L-shaped (i.e. subgradient) optimality mono-cut (Birge and
Louveaux, 2011, pp. 183-184) are respectively defined by

(Q(x⇤)� L)
⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+Q(x⇤) ✓, (15)

where S(x⇤) :⌘ {i : x⇤
i = 1}, and by

E⇠[�⇠(h⇠ � T⇠x)� 10✏⇠] ✓, (16)

where �⇠, ✏⇠ are solutions to (8) at x⇤.

3 Exact and approximate Benders decomposition

algorithms

We consider two algorithms for the purpose of solving the problem delineated
in Section 2. Both are based on Benders decomposition and each one is special-
ized into an exact and an approximate, ML-assisted version. Upon termination,
the exact versions yield accurate solutions and the approximate versions yield
feasible solutions. We indicate how responsibilities are divided between the com-
puting application, the solver and the solver callback. Namely, we distinguish
operations that are directed by the computing application and occurring outside
the reach of the solver, operations that are performed automatically through the
internal workings of the solver and operations that, while occurring inside the
reach of the solver, are determined by the callback. These details make it easier
to define possible modifications and assess their practicality.

3.1 Algorithm I: integer L-shaped cuts only
This algorithm exclusively applies integer L-shaped optimality cuts (Laporte
and Louveaux, 1993). Given the value of a candidate integral first stage solution,
the exact version of the algorithm calculates the optimal expected objective
value of second stage exactly. Based on the latter, an integer L-shaped cut
is calculated and is added to the first stage problem if it is binding. This
exact version of Algorithm I is essentially that called Std-Std in AA. In the
approximate, ML-assisted version of Algorithm I, the exact optimal expected
objective value of second stage is substituted with a prediction supplied by a
pre-trained ML approximator.

Let UB denote the current upper bound for the solution of (P) and (x⇤⇤, ✓⇤⇤)
denote the current incumbent solution. These are updated internally by the
algorithm.

6

tic version of the exact integer L-shaped cut (9) as
�
QML(x⇤)� L

� ⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+QML(x⇤) ✓. (12)

Similarly, let eQML(x⇤), �ML, ML denote, respectively, the predictions of eQ(x⇤)
in (6) and of �ML and ML in (11). We define a heuristic version of the exact
continuous L-shaped mono-cut (10) as

E⇠[�
ML(h⇠ � T⇠x)� 10 ML] ✓. (13)

We use these cuts in Algorithm 2 at Steps 5 and 10. In addition to the
argument determining the variant of the algorithm (standard integer L-shaped
or alternating cut strategy), there are two hyperparameters: 0 ⌧ µ 1 and
0 ⌧ ⌫ 1. They control the likelihood of introducing incorrect integer L-
shaped or continuous L-shaped cuts. This could occur even if the predictions
yielded by ML are of high quality and feature low average absolute relative
errors. Concretely, since we are defining minimization problems, we wish to
control the likelihood that eQML(x⇤) and QML(x⇤) overestimate their respective
exact values. We achieve this by uniformly shifting down the ML predictions.
The exact values of these shifts defined by µ and ⌫ should be estimated from a
preliminary tuning process on distinct problem instances starting with a value
of one.

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + cx⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

Before further discussing the two variants of the heuristic algorithm, we note
that we obtain the exact counterparts by fixing µ = ⌫ = 1 and using exact values

6

© Emma Frejinger

ML-L-SHAPED

18

Implementation
C-language bindings launch GPU
computations returning ML predictions

tic version of the exact integer L-shaped cut (9) as
�
QML(x⇤)� L

� ⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+QML(x⇤) ✓. (12)

Similarly, let eQML(x⇤), �ML, ML denote, respectively, the predictions of eQ(x⇤)
in (6) and of �ML and ML in (11). We define a heuristic version of the exact
continuous L-shaped mono-cut (10) as

E⇠[�
ML(h⇠ � T⇠x)� 10 ML] ✓. (13)

We use these cuts in Algorithm 2 at Steps 5 and 10. In addition to the
argument determining the variant of the algorithm (standard integer L-shaped
or alternating cut strategy), there are two hyperparameters: 0 ⌧ µ 1 and
0 ⌧ ⌫ 1. They control the likelihood of introducing incorrect integer L-
shaped or continuous L-shaped cuts. This could occur even if the predictions
yielded by ML are of high quality and feature low average absolute relative
errors. Concretely, since we are defining minimization problems, we wish to
control the likelihood that eQML(x⇤) and QML(x⇤) overestimate their respective
exact values. We achieve this by uniformly shifting down the ML predictions.
The exact values of these shifts defined by µ and ⌫ should be estimated from a
preliminary tuning process on distinct problem instances starting with a value
of one.

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + cx⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

Before further discussing the two variants of the heuristic algorithm, we note
that we obtain the exact counterparts by fixing µ = ⌫ = 1 and using exact values

6

ML-Standard-L-Shaped

Compute prediction of
Shift coefficient: Control bias against
rejection of valid first-stage integral
candidate solutions

Q(x*)

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if ⌫ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if µQML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + dz⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

terminates without a feasible solution, it can be reapplied, after decreasing the
values of µ and ⌫.

On the implementation, we note that since the predictions in Step 5 may
be yielded by a single prediction model, we therefore compute all predictions
simultaneously. In practice, C-language bindings launch GPU computations
returning ML predictions in Steps 5 and 10.

We now turn to the differences between the heuristic integer L-shaped and
alternating cut algorithms. First, recall that the alternating cut strategy was
proposed by Angulo et al. (2016) to avoid costly computations of Q(x⇤). On
the contrary, predictions QML(x⇤) are fast to compute (in the order of a few
milliseconds). Moreover, as we further discuss in Section 3, the task of predicting
Q(x⇤) is easier than that of predicting eQ(x⇤), �, and . This a priori favours the
heuristic version of the standard integer L-shaped method over the alternating
cuts strategy. However, the latter is likely to be useful when the first-stage
problem is hard. Indeed, integer L-shaped cuts suppress only one first-stage
solution at a time whereas continuous L-shaped cuts can be stronger. This can
make a difference when the number of heuristic integer L-shaped cuts is very
large if used alone. That is, the solution process is hindered by their large
number despite the very high speed of the individual computations.

We end this section by outlining two variants of the proposed algorithm.
Both make use of two phases, where Algorithm 1 is used in a first phase to
produce a feasible solution. In the first variant, this solution is used alone to
warm start the exact integer L-shaped method, or the one with alternating
cuts. The resulting approach is then exact. The second variant proceeds in the

7

© Emma Frejinger

ML-L-SHAPED

19

Implementation
C-language bindings launch GPU
computations returning ML predictions

tic version of the exact integer L-shaped cut (9) as
�
QML(x⇤)� L

� ⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+QML(x⇤) ✓. (12)

Similarly, let eQML(x⇤), �ML, ML denote, respectively, the predictions of eQ(x⇤)
in (6) and of �ML and ML in (11). We define a heuristic version of the exact
continuous L-shaped mono-cut (10) as

E⇠[�
ML(h⇠ � T⇠x)� 10 ML] ✓. (13)

We use these cuts in Algorithm 2 at Steps 5 and 10. In addition to the
argument determining the variant of the algorithm (standard integer L-shaped
or alternating cut strategy), there are two hyperparameters: 0 ⌧ µ 1 and
0 ⌧ ⌫ 1. They control the likelihood of introducing incorrect integer L-
shaped or continuous L-shaped cuts. This could occur even if the predictions
yielded by ML are of high quality and feature low average absolute relative
errors. Concretely, since we are defining minimization problems, we wish to
control the likelihood that eQML(x⇤) and QML(x⇤) overestimate their respective
exact values. We achieve this by uniformly shifting down the ML predictions.
The exact values of these shifts defined by µ and ⌫ should be estimated from a
preliminary tuning process on distinct problem instances starting with a value
of one.

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + cx⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

Before further discussing the two variants of the heuristic algorithm, we note
that we obtain the exact counterparts by fixing µ = ⌫ = 1 and using exact values

6

ML-AlternatingCut-L-Shaped

Compute prediction of
Shift coefficient: Control bias against
rejection of valid first-stage integral
candidate solutions

Q̃(x*), ϕ, ψ

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if ⌫ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if µQML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + dz⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

terminates without a feasible solution, it can be reapplied, after decreasing the
values of µ and ⌫.

On the implementation, we note that since the predictions in Step 5 may
be yielded by a single prediction model, we therefore compute all predictions
simultaneously. In practice, C-language bindings launch GPU computations
returning ML predictions in Steps 5 and 10.

We now turn to the differences between the heuristic integer L-shaped and
alternating cut algorithms. First, recall that the alternating cut strategy was
proposed by Angulo et al. (2016) to avoid costly computations of Q(x⇤). On
the contrary, predictions QML(x⇤) are fast to compute (in the order of a few
milliseconds). Moreover, as we further discuss in Section 3, the task of predicting
Q(x⇤) is easier than that of predicting eQ(x⇤), �, and . This a priori favours the
heuristic version of the standard integer L-shaped method over the alternating
cuts strategy. However, the latter is likely to be useful when the first-stage
problem is hard. Indeed, integer L-shaped cuts suppress only one first-stage
solution at a time whereas continuous L-shaped cuts can be stronger. This can
make a difference when the number of heuristic integer L-shaped cuts is very
large if used alone. That is, the solution process is hindered by their large
number despite the very high speed of the individual computations.

We end this section by outlining two variants of the proposed algorithm.
Both make use of two phases, where Algorithm 1 is used in a first phase to
produce a feasible solution. In the first variant, this solution is used alone to
warm start the exact integer L-shaped method, or the one with alternating
cuts. The resulting approach is then exact. The second variant proceeds in the

7

© Emma Frejinger

ML-L-SHAPED

20

Implementation
C-language bindings launch GPU
computations returning ML predictions

tic version of the exact integer L-shaped cut (9) as
�
QML(x⇤)� L

� ⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+QML(x⇤) ✓. (12)

Similarly, let eQML(x⇤), �ML, ML denote, respectively, the predictions of eQ(x⇤)
in (6) and of �ML and ML in (11). We define a heuristic version of the exact
continuous L-shaped mono-cut (10) as

E⇠[�
ML(h⇠ � T⇠x)� 10 ML] ✓. (13)

We use these cuts in Algorithm 2 at Steps 5 and 10. In addition to the
argument determining the variant of the algorithm (standard integer L-shaped
or alternating cut strategy), there are two hyperparameters: 0 ⌧ µ 1 and
0 ⌧ ⌫ 1. They control the likelihood of introducing incorrect integer L-
shaped or continuous L-shaped cuts. This could occur even if the predictions
yielded by ML are of high quality and feature low average absolute relative
errors. Concretely, since we are defining minimization problems, we wish to
control the likelihood that eQML(x⇤) and QML(x⇤) overestimate their respective
exact values. We achieve this by uniformly shifting down the ML predictions.
The exact values of these shifts defined by µ and ⌫ should be estimated from a
preliminary tuning process on distinct problem instances starting with a value
of one.

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + cx⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

Before further discussing the two variants of the heuristic algorithm, we note
that we obtain the exact counterparts by fixing µ = ⌫ = 1 and using exact values

6

‣ Feasible solution guarantee: in
(unlikely) event of failure, resolve
using decreasing values of and

‣ Two-phase variants
‣ Exact: warm start with heuristic

solution
‣ Warm start with heuristic solution

and a probabilistic lower bound
(10% one-sided Chebyshev lower
confidence bound based on the
distribution of exact first-stage
values in distinct dataset)

μ ν

© Emma Frejinger

ALGORITHMS — REMARKS

‣ Learning to predict is easier than learning
to predict , and

‣ Predictions are very fast to compute (a few
milliseconds)
‣ Invariant with respect to number of scenarios
‣ Nearly constant across instances and these

tasks
‣ A priori favours the ML-based matheuristic

version of the standard integer L-shaped method
over alternating cut strategy (except when first-
stage problem is hard)

Q(x*)
Q̃(x*) ϕ ψ

21

In exact version, alternating cuts
designed to avoid costly computations of

 Q(x*)

tic version of the exact integer L-shaped cut (9) as
�
QML(x⇤)� L

� ⇣ X

i2S(x⇤)

xi �
X

i/2S(x⇤)

xi � |S(x⇤)|
⌘
+QML(x⇤) ✓. (12)

Similarly, let eQML(x⇤), �ML, ML denote, respectively, the predictions of eQ(x⇤)
in (6) and of �ML and ML in (11). We define a heuristic version of the exact
continuous L-shaped mono-cut (10) as

E⇠[�
ML(h⇠ � T⇠x)� 10 ML] ✓. (13)

We use these cuts in Algorithm 2 at Steps 5 and 10. In addition to the
argument determining the variant of the algorithm (standard integer L-shaped
or alternating cut strategy), there are two hyperparameters: 0 ⌧ µ 1 and
0 ⌧ ⌫ 1. They control the likelihood of introducing incorrect integer L-
shaped or continuous L-shaped cuts. This could occur even if the predictions
yielded by ML are of high quality and feature low average absolute relative
errors. Concretely, since we are defining minimization problems, we wish to
control the likelihood that eQML(x⇤) and QML(x⇤) overestimate their respective
exact values. We achieve this by uniformly shifting down the ML predictions.
The exact values of these shifts defined by µ and ⌫ should be estimated from a
preliminary tuning process on distinct problem instances starting with a value
of one.

Algorithm 2 Benders decomposition: Heuristic callback
1: procedure HeuristicCallback(isAlt,µ,⌫)
2: if !isAlt then
3: go to 10
4: end if
5: Compute predictions eQML(x⇤), �ML, ML . Alternating cut strategy
6: if µ eQML(x⇤) > ✓⇤ then
7: Add a heuristic continuous L-shaped mono-cut (13)
8: return
9: end if

10: Compute prediction QML(x⇤) . Integer L-shaped method
11: if ⌫QML(x⇤) ✓⇤ then
12: if cx⇤ + dz⇤ + ✓⇤ < UB then
13: UB cx⇤ + cx⇤ + ✓⇤ . Update upper bound
14: (x⇤⇤, z⇤⇤) (x⇤, z⇤) . Update incumbent solution
15: return
16: end if
17: else
18: Add a heuristic integer L-shaped cut (12)
19: return
20: end if
21: return
22: end procedure

Before further discussing the two variants of the heuristic algorithm, we note
that we obtain the exact counterparts by fixing µ = ⌫ = 1 and using exact values

6

© Emma Frejinger

GENERAL REMARKS ON ML
‣ Training/validation data distribution should

cover problem instances that are relevant to the
application at hand (simulated and/or historical
data)

‣ Input structure

‣ Instance description

‣ Size reduction and normalization of values

‣ Output structure

‣ Integer L-shaped cuts (output in)

‣ Continuous L-shaped cuts

‣ Size reduction (naive — potentially large size)

ℝ

22

Generation of training/validation data for
supervised learning

{instance, solution} examples

Instances
1. Parametrize (deterministic and stochastic
problem data)
2. Pseudo-random sampling

Solutions
$$$ a) Solve (expectation over all scenarios)

$ b) Solve for each scenario independently
 (Larsen et al., 2021)

Q(x)
Q̃(x), ϕ, ψ

© Emma Frejinger

4
23

Extensive numerical study:
Large speedups when there is a large number of scenarios
Optimality gaps close to zero

© Emma Frejinger

PROBLEM CLASSES
‣ Benchmark instances from Angulo et al.

(2016) available in SIPLIB (Ahmed et al., 2015)

‣ Stochastic Server Location Problem SSLP
(n,m,k)

‣ Locate n servers to satisfy m customers, k
scenarios

‣ Good candidate for the proposed
methodology

‣ Stochastic Multiple Binary Knapsack Problem

24

Stochastic Server Location Problem — SSLP(n,m,k)

Stochastic Multiple Binary Knapsack Problem — SMKP

Relatively hard
2nd stage

Relatively easy
1st stage

Relatively easy
2nd stage

Relatively hard
1st stage

All second-stage
coefficients are
deterministic except
right-hand side of some
constraints

All second-stage
coefficients are
deterministic except
those in the objective
function © Emma Frejinger

25

Hardest instances
* from the literature

(and make 2nd
stage harder)

Parametrize and
generate data for

training / validation

Supervised
learning

Results

Test performance on
100 instances

SSLP(10,50,2000)*

SSLP(15,45,15)*

SMKP(29)*

SMKP(30)*

20 scenarios
(No solution in Angulo et al. (2016)

SSLPF(15,45,150)
SSLPF(15,80,150)

Input: server capacities
and coupling binaries
(or)

Output:

ℕ20 ℕ30

ℝ

Naive Input: ,
reduced to

Output: reduced to

ℕ600

ℝ5

ℝ7

Basic deep learning
(feed forward nets)

Prediction time: few
milliseconds

Std MAE < 1%

Alt MAE < 7.5%

Std MAE < 1%
© Emma Frejinger

RESULTS — KEY TAKEAWAYS
‣ SSLP (ML-Standard-L-Shaped)

‣ Average speed up: x11 - x167 compared to exact

‣ First-stage solution quality: average optimality gaps < 2% (median
< 0.000)

‣ SMKP (ML-AlternatingCuts-L-Shaped)

‣ x6-x7 compared to exact, but PH is x8-x14 compared to ML-L-
Shaped

‣ First-stage solution quality: average optimality gaps < 0.08%, PH
slightly worse (~0.2%)

‣ Speed of our method is invariant wrt the number of scenarios,
while PH is not 26

Scenarios

© Emma Frejinger

RESULTS — SSLP
‣ ML-based matheuristic version of the standard integer L-shaped method

‣ Average speed up

‣ x11 - x167 compared to exact

‣ First-stage solution quality

‣ Excluding index, average optimality gaps < 2% (median < 0.000)

27

Computing time (s) Optimality gaps (%)

ML approximator for the solution of a second stage problem. For everyone of
the feed forward networks considered here, this time is nearly constant and at
most equal to a few milliseconds.

family IP or LP input length hid. layers units/hid. layer output length abs. rel. error

SSLPF(10,50,2000) IP 20 10 800 1 0.87%
SSLPF-indx(10,50,2000) IP 20 10 800 1 5.31%*
SSLPF(15,45,15) IP 30 10 800 1 0.23%
SSLPF(15,45,150) IP 30 10 800 1 0.12%
SSLPF(15,80,15) IP 30 10 800 1 0.40%
SMKPF(29) IP 5 10 800 1 0.071%
SMKPF(29) LP 5 15 1000 7 6.64%
SMKPF(30) IP 5 10 800 1 0.072%
SMKPF(30) LP 5 15 1000 7 7.41%
IP, LP: output is solution of integral or relaxed 2nd stage problem.

abs. rel. error: average absolute relative prediction error made on ML test set.

*: test set is same as that of SSLPF(10,50,2000).

Table 1: ML predictors

6 Detailed analysis

Problem family Our Exact PH
avg std. err avg std. err avg std. err

(10,50,2000) 0.93 (0.08) 156.06 (2.89) 224.44 (12.29)
(10,50,2000)index 0.85 (0.08) – – – –
(15,45,15) 0.45 (0.01) 5.25 (0.11) 24.80 (2.26)
(15,45,150) 0.55 (0.01) 34.95 (0.57) 36.69 (2.08)
(15,80,15) 4.12 (0.29) 58.55 (3.15) 48.88 (4.59)

Problem family Our PH
avg std. err avg std. err

(10,50,2000) 0.006 (0.003) 0.078 (0.011)
(10,50,2000)index 2.609 (0.242) – –
(15,45,15) 0.064 (0.019) 0.005 (0.001)
(15,45,150) 1.943 (1.150) 0.053 (0.006)
(15,80,15) 0.075 (0.018) 0.119 (0.052)

We wish to avoid implicitly presenting sections 6 and 7 on an equal footing.
Hence, we should carefully choose their names.

Our experiments consist in generating 100 instances from each one of the
families SSLPF(10, 50, 2000), SSLPF(15, 45, 15), SSLPF(15, 45, 150), SSLPF(15,
80, 15), SMKPF(29) and SMKPF(30) and running comparisons between exact
and approximate versions of Algorithms I and II in regard to computation time,
accuracy of first stage objective value, primal integral, number of first stage
nodes, number and duration of integral second stage problems, number and du-
ration of continuously relaxed second stage problems. All computations reported
in this section are performed on an Intel i9 processor with the Java program-
ming language adjoined with the Java version of CPLEX, version 12.10. ML

15

ML approximator for the solution of a second stage problem. For everyone of
the feed forward networks considered here, this time is nearly constant and at
most equal to a few milliseconds.

family IP or LP input length hid. layers units/hid. layer output length abs. rel. error

SSLPF(10,50,2000) IP 20 10 800 1 0.87%
SSLPF-indx(10,50,2000) IP 20 10 800 1 5.31%*
SSLPF(15,45,15) IP 30 10 800 1 0.23%
SSLPF(15,45,150) IP 30 10 800 1 0.12%
SSLPF(15,80,15) IP 30 10 800 1 0.40%
SMKPF(29) IP 5 10 800 1 0.071%
SMKPF(29) LP 5 15 1000 7 6.64%
SMKPF(30) IP 5 10 800 1 0.072%
SMKPF(30) LP 5 15 1000 7 7.41%
IP, LP: output is solution of integral or relaxed 2nd stage problem.

abs. rel. error: average absolute relative prediction error made on ML test set.

*: test set is same as that of SSLPF(10,50,2000).

Table 1: ML predictors

6 Detailed analysis

Problem family Our Exact PH
avg std. err avg std. err avg std. err

(10,50,2000) 0.93 (0.08) 156.06 (2.89) 224.44 (12.29)
(10,50,2000)index 0.85 (0.08) – – – –
(15,45,15) 0.45 (0.01) 5.25 (0.11) 24.80 (2.26)
(15,45,150) 0.55 (0.01) 34.95 (0.57) 36.69 (2.08)
(15,80,15) 4.12 (0.29) 58.55 (3.15) 48.88 (4.59)

Problem family Our PH
avg std. err avg std. err

(10,50,2000) 0.006 (0.003) 0.078 (0.011)
(10,50,2000)index 2.609 (0.242) – –
(15,45,15) 0.064 (0.019) 0.005 (0.001)
(15,45,150) 1.943 (1.150) 0.053 (0.006)
(15,80,15) 0.075 (0.018) 0.119 (0.052)

We wish to avoid implicitly presenting sections 6 and 7 on an equal footing.
Hence, we should carefully choose their names.

Our experiments consist in generating 100 instances from each one of the
families SSLPF(10, 50, 2000), SSLPF(15, 45, 15), SSLPF(15, 45, 150), SSLPF(15,
80, 15), SMKPF(29) and SMKPF(30) and running comparisons between exact
and approximate versions of Algorithms I and II in regard to computation time,
accuracy of first stage objective value, primal integral, number of first stage
nodes, number and duration of integral second stage problems, number and du-
ration of continuously relaxed second stage problems. All computations reported
in this section are performed on an Intel i9 processor with the Java program-
ming language adjoined with the Java version of CPLEX, version 12.10. ML

15

© Emma Frejinger

RESULTS — SSLP

28

the averages appearing respectively in the fourth column of the third block of
columns of Tables 6 and 5, on the one hand, and in the fourth column of the
third block of columns of Tables 8 and 7, on the other hand.

By construction, Std-L only requires the solution of integral second-stage
problems. The third blocks of columns of Tables 5 and 6 show that, when it is
applied to the SSLP families, ML-Std-L must compute at most a few thousands
approximate integer L-shaped cuts and that the latter are generated within a
few milliseconds on average, including the time required to predict the value of
second stage with ML. In contrast, the second blocks of columns of Tables 7 and
8 show that Alt-L must solve exactly a comparable number of relaxed second-
stage problems at a cost of several milliseconds each and must in addition,
according to the second blocks of columns of Tables 5 and 6, solve exactly
several integral second-stage problems at a cost of one or more seconds each.

The latter findings point to the main source of the reduction in computation
time achieved by ML-Std-L in comparison to the fastest exact algorithm avail-
able (Alt-L), when the number of first-stage nodes is in the order of thousands
as in the SSLP families: The high speed with which predictions of the value of
the integral second-stage problem are generated with ML is sufficient to offset
the larger number of integral second-stage problems in comparison with Alt-L.
This speed is even higher than the speed at which the exact values of the relaxed
second-stage problems can be computed by Alt-L.

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 56.00 65.00 82.90 66.73 381.00 417.00 455.95 419.17 514.06% 643.20% 756.01% 636.07%
(0.88) (2.73) (7.14%)

SSLPF-indx(10,50,2000) 56.00 65.00 82.90 66.73 327.10 402.00 467.00 401.16 475.16% 621.40% 733.87% 608.65%
(0.88) (3.98) (8.06%)

SSLPF(15,45,15) 52.00 63.00 79.95 64.06 1075.05 1243.50 1601.55 1289.88 1563.66% 1973.50% 2749.83% 2052.07%
(0.96) (17.59) (38.41%)

SSLPF(15,45,150) 57.05 70.00 86.00 70.29 1006.25 1259.00 1582.85 1266.55 1289.20% 1791.57% 2556.04% 1828.42%
(0.84) (24.91) (42.47%)

SSLPF(15,80,15) 37.10 72.00 89.95 70.26 4952.95 6052.00 13922.15 6641.81 6587.86% 8504.23% 18138.67% 9875.65%
(1.48) (221.40) (362.88%)

SMKPF(29) 35.00 64.00 178.00 77.36 13.00 20.00 33.00 21.51 13.08% 30.88% 62.96% 33.52%
(4.51) (0.75) (1.52%)

SMKPF(30) 36.00 71.00 240.00 100.15 14.00 25.00 43.00 29.74 9.77% 31.34% 77.78% 35.34%
(8.96) (4.81) (2.12%)

Standard error of estimate is reported between parentheses.

Table 5: Number of integral second-stage problems

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 26439.20 36704.00 63863.85 42256.11 568.05 622.00 709.55 632.82 1.02% 1.77% 2.32% 1.69%
(2867.43) (6.44) (0.04%)

SSLPF-indx(10,50,2000) 26439.20 36704.00 63863.85 42256.11 530.25 643.50 772.35 647.42 1.09% 1.73% 2.34% 1.73%
(2867.43) (7.89) (0.04%)

SSLPF(15,45,15) 269.50 511.50 1434.75 633.63 1606.10 1845.50 2268.75 1876.13 141.95% 357.32% 684.90% 370.39%
(34.56) (21.33) (16.43%)

SSLPF(15,45,150) 2140.10 3851.00 7380.75 4097.17 1539.75 1891.50 2339.10 1886.55 27.87% 48.97% 87.26% 51.92%
(166.85) (33.91) (1.82%)

SSLPF(15,80,15) 2492.65 9765.00 84545.40 20430.97 4882.90 5599.50 10086.90 5921.83 8.76% 57.08% 245.03% 90.41%
(2999.29) (131.59) (10.39%)

SMKPF(29) 321.00 1407.00 13965.00 3270.07 13.00 21.00 49.00 24.37 0.18% 1.51% 7.88% 2.26%
(487.56) (1.09) (0.21%)

SMKPF(30) 363.00 1996.00 12476.00 4667.21 13.00 27.00 62.00 34.43 0.28% 1.19% 6.58% 2.25%
(1282.23) (5.69) (0.22%)

Standard error of estimate is reported between parentheses.

Table 6: Total time spent in integral second-stage problems (ms)

Two-phase variants. We now turn our attention to feedin solution processes
where ML-L-Shaped first produces a solution that is used as an initial incumbent
first-stage solution in Alt-L. The last block of columns of Table 9 reports the

15

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 364.00 406.00 460.95 408.13 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2.97) (0.00) (0.00%)

SSLPF-indx(10,50,2000) 364.00 406.00 460.95 408.13 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2.97) (0.00) (0.00%)

SSLPF(15,45,15) 933.15 1047.50 1347.20 1084.63 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(14.04) (0.00) (0.00%)

SSLPF(15,45,150) 924.70 1089.00 1392.25 1115.20 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(15.40) (0.00) (0.00%)

SSLPF(15,80,15) 5432.45 6234.00 7711.50 6308.44 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(65.66) (0.00) (0.00%)

SMKPF(29) 55.00 109.00 331.00 137.53 17.00 24.00 40.00 25.68 8.10% 22.52% 49.06% 23.93%
(8.86) (0.79) (1.18%)

SMKPF(30) 55.00 124.00 424.00 175.29 18.00 29.00 48.00 34.56 6.67% 21.24% 59.82% 25.36%
(16.66) (4.82) (1.64%)

Standard error of estimate is reported between parentheses.

Table 7: Number of relaxed second-stage problems

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 591539.95 667071.00 749049.35 664969.61 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(5065.41) (0.00) (0.00%)

SSLPF-indx(10,50,2000) 591539.95 667071.00 749049.35 664969.61 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(5065.41) (0.00) (0.00%)

SSLPF(15,45,15) 22277.30 25686.50 34244.55 26816.72 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(480.28) (0.00) (0.00%)

SSLPF(15,45,150) 142335.25 172721.50 223728.10 177046.35 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2736.33) (0.00) (0.00%)

SSLPF(15,80,15) 180629.90 209324.00 250452.65 210419.66 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2140.48) (0.00) (0.00%)

SMKPF(29) 104.00 240.00 901.00 318.47 41.00 74.00 154.00 89.43 9.77% 31.65% 68.12% 34.65%
(24.58) (8.10) (1.99%)

SMKPF(30) 235.00 536.00 1957.00 787.58 45.00 78.00 316.00 141.32 4.27% 13.77% 50.13% 18.54%
(78.99) (35.70) (1.42%)

Standard error of estimate is reported between parentheses.

Table 8: Total time spent in relaxed second-stage problems (ms)

average ratio of the total time required for calculating the approximate solution
and calculating the exact solution while using the latter as an initial incumbent,
to the time required to only compute the exact solution without the extraneous
incumbent solution. Since this average ratio varies between 83% and 111% over
the SSLP families, we conclude that the use of this two-phase variant is not
advantageous by itself.

Problem family
Alt-L Two-phase Two-phase/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 131.63 150.73 186.04 156.06 113.54 127.05 143.25 127.84 72.97% 84.36% 91.93% 82.85%
(2.89) (1.17) (0.67%)

SSLPF-indx(10,50,2000) 131.63 150.73 186.04 156.06 125.57 141.74 162.68 142.03 79.88% 92.63% 102.30% 92.02%
(2.89) (1.43) (0.82%)

SSLPF(15,45,15) 4.28 5.00 7.12 5.25 4.40 5.04 6.38 5.37 86.52% 100.64% 109.28% 101.13%
(0.11) (0.23) (1.34%)

SSLPF(15,45,150) 27.96 34.16 43.93 34.96 32.14 38.46 50.46 38.78 99.40% 111.71% 120.48% 111.22%
(0.57) (0.62) (0.84%)

SSLPF(15,80,15) 36.20 47.24 130.70 58.55 13.12 52.88 76.42 48.96 27.15% 98.83% 142.27% 94.48%
(3.15) (2.49) (6.07%)

Standard error of estimate is reported between parentheses.

Table 9: Total computation time with feedback from approximate solution (s)

The last block of columns Table 10 reports the same average ratio when a
probabilistic lower bound on the value of the first stage objective is introduced
in addition in the exact solution process. The joint effect of introducing the
extraneous incumbent solution and the probabilistic lower bound on the average
time ratio is then moderately yet unambiguously advantageous. (Notice that
the application of the probabilistic lower bound alone was shown in a distinct
experiment not to be advantageous.)

16

Number of integral second-stage problems

Number of relaxed second-stage problems

Standard L-Shaped version of
ML-L-Shaped

Number of integral second-
stage problems comparable to
number of relaxed second-
stage problems of exact
method with alternating cuts

© Emma Frejinger

RESULTS — SSLP

29

Total time spent in integral second-stage problems (ms)

Total time spent in relaxed second-stage problems (ms)

the averages appearing respectively in the fourth column of the third block of
columns of Tables 6 and 5, on the one hand, and in the fourth column of the
third block of columns of Tables 8 and 7, on the other hand.

By construction, Std-L only requires the solution of integral second-stage
problems. The third blocks of columns of Tables 5 and 6 show that, when it is
applied to the SSLP families, ML-Std-L must compute at most a few thousands
approximate integer L-shaped cuts and that the latter are generated within a
few milliseconds on average, including the time required to predict the value of
second stage with ML. In contrast, the second blocks of columns of Tables 7 and
8 show that Alt-L must solve exactly a comparable number of relaxed second-
stage problems at a cost of several milliseconds each and must in addition,
according to the second blocks of columns of Tables 5 and 6, solve exactly
several integral second-stage problems at a cost of one or more seconds each.

The latter findings point to the main source of the reduction in computation
time achieved by ML-Std-L in comparison to the fastest exact algorithm avail-
able (Alt-L), when the number of first-stage nodes is in the order of thousands
as in the SSLP families: The high speed with which predictions of the value of
the integral second-stage problem are generated with ML is sufficient to offset
the larger number of integral second-stage problems in comparison with Alt-L.
This speed is even higher than the speed at which the exact values of the relaxed
second-stage problems can be computed by Alt-L.

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 56.00 65.00 82.90 66.73 381.00 417.00 455.95 419.17 514.06% 643.20% 756.01% 636.07%
(0.88) (2.73) (7.14%)

SSLPF-indx(10,50,2000) 56.00 65.00 82.90 66.73 327.10 402.00 467.00 401.16 475.16% 621.40% 733.87% 608.65%
(0.88) (3.98) (8.06%)

SSLPF(15,45,15) 52.00 63.00 79.95 64.06 1075.05 1243.50 1601.55 1289.88 1563.66% 1973.50% 2749.83% 2052.07%
(0.96) (17.59) (38.41%)

SSLPF(15,45,150) 57.05 70.00 86.00 70.29 1006.25 1259.00 1582.85 1266.55 1289.20% 1791.57% 2556.04% 1828.42%
(0.84) (24.91) (42.47%)

SSLPF(15,80,15) 37.10 72.00 89.95 70.26 4952.95 6052.00 13922.15 6641.81 6587.86% 8504.23% 18138.67% 9875.65%
(1.48) (221.40) (362.88%)

SMKPF(29) 35.00 64.00 178.00 77.36 13.00 20.00 33.00 21.51 13.08% 30.88% 62.96% 33.52%
(4.51) (0.75) (1.52%)

SMKPF(30) 36.00 71.00 240.00 100.15 14.00 25.00 43.00 29.74 9.77% 31.34% 77.78% 35.34%
(8.96) (4.81) (2.12%)

Standard error of estimate is reported between parentheses.

Table 5: Number of integral second-stage problems

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 26439.20 36704.00 63863.85 42256.11 568.05 622.00 709.55 632.82 1.02% 1.77% 2.32% 1.69%
(2867.43) (6.44) (0.04%)

SSLPF-indx(10,50,2000) 26439.20 36704.00 63863.85 42256.11 530.25 643.50 772.35 647.42 1.09% 1.73% 2.34% 1.73%
(2867.43) (7.89) (0.04%)

SSLPF(15,45,15) 269.50 511.50 1434.75 633.63 1606.10 1845.50 2268.75 1876.13 141.95% 357.32% 684.90% 370.39%
(34.56) (21.33) (16.43%)

SSLPF(15,45,150) 2140.10 3851.00 7380.75 4097.17 1539.75 1891.50 2339.10 1886.55 27.87% 48.97% 87.26% 51.92%
(166.85) (33.91) (1.82%)

SSLPF(15,80,15) 2492.65 9765.00 84545.40 20430.97 4882.90 5599.50 10086.90 5921.83 8.76% 57.08% 245.03% 90.41%
(2999.29) (131.59) (10.39%)

SMKPF(29) 321.00 1407.00 13965.00 3270.07 13.00 21.00 49.00 24.37 0.18% 1.51% 7.88% 2.26%
(487.56) (1.09) (0.21%)

SMKPF(30) 363.00 1996.00 12476.00 4667.21 13.00 27.00 62.00 34.43 0.28% 1.19% 6.58% 2.25%
(1282.23) (5.69) (0.22%)

Standard error of estimate is reported between parentheses.

Table 6: Total time spent in integral second-stage problems (ms)

Two-phase variants. We now turn our attention to feedin solution processes
where ML-L-Shaped first produces a solution that is used as an initial incumbent
first-stage solution in Alt-L. The last block of columns of Table 9 reports the

15

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 364.00 406.00 460.95 408.13 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2.97) (0.00) (0.00%)

SSLPF-indx(10,50,2000) 364.00 406.00 460.95 408.13 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2.97) (0.00) (0.00%)

SSLPF(15,45,15) 933.15 1047.50 1347.20 1084.63 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(14.04) (0.00) (0.00%)

SSLPF(15,45,150) 924.70 1089.00 1392.25 1115.20 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(15.40) (0.00) (0.00%)

SSLPF(15,80,15) 5432.45 6234.00 7711.50 6308.44 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(65.66) (0.00) (0.00%)

SMKPF(29) 55.00 109.00 331.00 137.53 17.00 24.00 40.00 25.68 8.10% 22.52% 49.06% 23.93%
(8.86) (0.79) (1.18%)

SMKPF(30) 55.00 124.00 424.00 175.29 18.00 29.00 48.00 34.56 6.67% 21.24% 59.82% 25.36%
(16.66) (4.82) (1.64%)

Standard error of estimate is reported between parentheses.

Table 7: Number of relaxed second-stage problems

Problem family
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 591539.95 667071.00 749049.35 664969.61 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(5065.41) (0.00) (0.00%)

SSLPF-indx(10,50,2000) 591539.95 667071.00 749049.35 664969.61 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(5065.41) (0.00) (0.00%)

SSLPF(15,45,15) 22277.30 25686.50 34244.55 26816.72 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(480.28) (0.00) (0.00%)

SSLPF(15,45,150) 142335.25 172721.50 223728.10 177046.35 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2736.33) (0.00) (0.00%)

SSLPF(15,80,15) 180629.90 209324.00 250452.65 210419.66 0.00 0.00 0.00 0.00 0.00% 0.00% 0.00% 0.00%
(2140.48) (0.00) (0.00%)

SMKPF(29) 104.00 240.00 901.00 318.47 41.00 74.00 154.00 89.43 9.77% 31.65% 68.12% 34.65%
(24.58) (8.10) (1.99%)

SMKPF(30) 235.00 536.00 1957.00 787.58 45.00 78.00 316.00 141.32 4.27% 13.77% 50.13% 18.54%
(78.99) (35.70) (1.42%)

Standard error of estimate is reported between parentheses.

Table 8: Total time spent in relaxed second-stage problems (ms)

average ratio of the total time required for calculating the approximate solution
and calculating the exact solution while using the latter as an initial incumbent,
to the time required to only compute the exact solution without the extraneous
incumbent solution. Since this average ratio varies between 83% and 111% over
the SSLP families, we conclude that the use of this two-phase variant is not
advantageous by itself.

Problem family
Alt-L Two-phase Two-phase/Alt-L ratio

Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg

SSLPF(10,50,2000) 131.63 150.73 186.04 156.06 113.54 127.05 143.25 127.84 72.97% 84.36% 91.93% 82.85%
(2.89) (1.17) (0.67%)

SSLPF-indx(10,50,2000) 131.63 150.73 186.04 156.06 125.57 141.74 162.68 142.03 79.88% 92.63% 102.30% 92.02%
(2.89) (1.43) (0.82%)

SSLPF(15,45,15) 4.28 5.00 7.12 5.25 4.40 5.04 6.38 5.37 86.52% 100.64% 109.28% 101.13%
(0.11) (0.23) (1.34%)

SSLPF(15,45,150) 27.96 34.16 43.93 34.96 32.14 38.46 50.46 38.78 99.40% 111.71% 120.48% 111.22%
(0.57) (0.62) (0.84%)

SSLPF(15,80,15) 36.20 47.24 130.70 58.55 13.12 52.88 76.42 48.96 27.15% 98.83% 142.27% 94.48%
(3.15) (2.49) (6.07%)

Standard error of estimate is reported between parentheses.

Table 9: Total computation time with feedback from approximate solution (s)

The last block of columns Table 10 reports the same average ratio when a
probabilistic lower bound on the value of the first stage objective is introduced
in addition in the exact solution process. The joint effect of introducing the
extraneous incumbent solution and the probabilistic lower bound on the average
time ratio is then moderately yet unambiguously advantageous. (Notice that
the application of the probabilistic lower bound alone was shown in a distinct
experiment not to be advantageous.)

16

High speed offsets the
larger number of integral
second-stage problems

© Emma Frejinger

RESULTS — SMKP
‣ ML-based matheuristic version of the L-shaped method with alternating cuts

‣ Average speed up

‣ x6-x7 compared to exact, but PH is x8-x14 compared to ours

‣ First-stage solution quality

‣ Average optimality gaps < 0.08%, PH slightly worse (~0.2%)

‣ Speed of our method is invariant wrt the number of scenarios, while PH is not

30

Computing time (s) Optimality gaps (%)

Problem family Our Exact PH
avg std. err avg std. err avg std. err

(29) 20 scenarios 175.56 (18.20) 1237.13 (124.28) 21.17 (0.33)
(30) 20 scenarios 328.41 (56.51) 2137.45 (257.23) 22.49 (1.00)
(29) 2000 scenarios – – – – 484.57 (98.27)
(30) 2000 scenarios – – – – 372.60 (80.58)

Problem family Our PH
avg std. err avg std. err

(29) 0.008 (0.002) 0.223 (0.009)
(30) 0.005 (0.001) 0.224 (0.008)

predictions are called through the Java bindings of TorchScript and performed
on a single Nvidia RTX 3090 GPU.

Tables 2 to 11 report the detailed results of our experiments. Before we
proceed to explore their content, we open with two background remarks. First,
for each one of the families SSLPF(10, 50, 2000), SSLPF(15, 45, 15), SSLPF(15,
45, 150), SSLPF(15, 85, 15), SMKPF(29) and SMKPF(30), our comparisons are
based on statistics summarizing the results obtained from calculations made for
each simulated problem instance. Second, our results about SSLPF(10, 50,
2000), SSLPF(15, 45, 15), SMKPF(29), SMKPF(30) are aligned with those
reported in AA: We find out that the exact version of Algorithm II (alternating
opportunistically between standard and integer L-shaped cuts) achieves smaller
computation times than the the exact version of Algorithm I (applying only
integer L-shaped cuts). Hence, the exact version of Algorithm II is reported in
the tables as the benchmark for any comparison between approximate and exact
calculations. Furthermore, the hierarchy of our computation times between
SSLPFf(10, 50, 2000), SSLPF(15, 45, 15), SMKPF(29), SMKPF(30) is similar
to that reported in AA.

6.1 Families of SSLP instances
We found out in independent, preliminary experiments that the approximate
version of Algorithm I is faster than and equally accurate as the approximate
version of Algorithm II in regard to families SSLPF(10, 50, 2000), SSLPF(15,
45, 15), SSLPF(15, 45, 150) and SSLPF(15, 80, 15). Hence, the figures reported
in the tables in connection to families SSLPF(10, 50, 2000), SSLPF-indx(10, 50,
2000), SSLPF(15, 45, 15), SSLPF(15, 45, 150) and SSLPF(15, 80, 15) originate
from the approximate version of Algorithm I. Section 6.2 hereafter reports an
opposite finding in regard to the SMKP families and its first paragraph suggests
an explanation.

Computation times. As evidenced in Table 2, Algorithm I achieves compu-
tation times far smaller than those required by the fastest exact Algorithm II,
when it is equipped with an ML predictor to compute the approximate inte-
ger L-shaped cuts. For instance, the average ratios of computation times over
100 generated instances of families SSLPF(10, 50, 2000) and SSLPF(15, 45,

16

Problem family Our Exact PH
avg std. err avg std. err avg std. err

(29) 20 scenarios 175.56 (18.20) 1237.13 (124.28) 21.17 (0.33)
(30) 20 scenarios 328.41 (56.51) 2137.45 (257.23) 22.49 (1.00)
(29) 2000 scenarios – – – – 484.57 (98.27)
(30) 2000 scenarios – – – – 372.60 (80.58)

Problem family Our PH
avg std. err avg std. err

(29) 0.008 (0.002) 0.223 (0.009)
(30) 0.005 (0.001) 0.224 (0.008)

predictions are called through the Java bindings of TorchScript and performed
on a single Nvidia RTX 3090 GPU.

Tables 2 to 11 report the detailed results of our experiments. Before we
proceed to explore their content, we open with two background remarks. First,
for each one of the families SSLPF(10, 50, 2000), SSLPF(15, 45, 15), SSLPF(15,
45, 150), SSLPF(15, 85, 15), SMKPF(29) and SMKPF(30), our comparisons are
based on statistics summarizing the results obtained from calculations made for
each simulated problem instance. Second, our results about SSLPF(10, 50,
2000), SSLPF(15, 45, 15), SMKPF(29), SMKPF(30) are aligned with those
reported in AA: We find out that the exact version of Algorithm II (alternating
opportunistically between standard and integer L-shaped cuts) achieves smaller
computation times than the the exact version of Algorithm I (applying only
integer L-shaped cuts). Hence, the exact version of Algorithm II is reported in
the tables as the benchmark for any comparison between approximate and exact
calculations. Furthermore, the hierarchy of our computation times between
SSLPFf(10, 50, 2000), SSLPF(15, 45, 15), SMKPF(29), SMKPF(30) is similar
to that reported in AA.

6.1 Families of SSLP instances
We found out in independent, preliminary experiments that the approximate
version of Algorithm I is faster than and equally accurate as the approximate
version of Algorithm II in regard to families SSLPF(10, 50, 2000), SSLPF(15,
45, 15), SSLPF(15, 45, 150) and SSLPF(15, 80, 15). Hence, the figures reported
in the tables in connection to families SSLPF(10, 50, 2000), SSLPF-indx(10, 50,
2000), SSLPF(15, 45, 15), SSLPF(15, 45, 150) and SSLPF(15, 80, 15) originate
from the approximate version of Algorithm I. Section 6.2 hereafter reports an
opposite finding in regard to the SMKP families and its first paragraph suggests
an explanation.

Computation times. As evidenced in Table 2, Algorithm I achieves compu-
tation times far smaller than those required by the fastest exact Algorithm II,
when it is equipped with an ML predictor to compute the approximate inte-
ger L-shaped cuts. For instance, the average ratios of computation times over
100 generated instances of families SSLPF(10, 50, 2000) and SSLPF(15, 45,

16

© Emma Frejinger

CONCLUSIONS
‣ Replacing costly computations by fast ML

predictions

‣ Large reductions in computing time compared to
best performing exact method, especially when
second-stage problems are hard / large number of
scenarios

‣ Online prediction time invariant to the number of
scenarios (but not offline data generation)

‣ High-quality solution

‣ First version of the paper — arXiv:2205.00897

‣ Future work: sample efficiency, account for
prediction errors, real-world problems

31© Emma Frejinger

Thank you!
emma.frejinger@umontreal.ca

emmafrejinger.org

‣ Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., and Sen, S. SIPLIB: A
stochastic integer programming test problem library, 2015. URL: https://
www2.isye.gatech.edu/~sahmed/siplib

‣ Angulo, G., Ahmed, S., and Dey, S. S. Improving the integer L-shaped method.
INFORMS Journal on Computing, 28(3):483–499, 2016.

‣ Carøe, C. C. and Schultz, R. Dual decomposition in stochastic integer program-
ming. Operations Research Letters, 24(1):37–45, 1999.

‣ Rockafellar, R. T. and Wets, R. J.-B. Scenarios and policy aggregation in optimization
under uncertainty. Mathematics of Operations Research, 16(1): 119–147, 1991.

‣ Watson, J.-P. and Woodruff, D. L. Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems. Computational Management
Science, 8(4):355–370, 2011.

© Emma Frejinger

