

A Fast Matheuristic for Two-Stage Stochastic Programs through Supervised Learning

ERIC LARSEN, EMMA FREJINGER, BERNARD GENDRON AND ANDREA LODI

ELLIIT focus period workshop: Hybrid AI - Where data-driven and model-based methods meet

November 1, 2022

arXiv:2205.00897

The Economist, March 15th 2020

Characteristics of many decision-making problems related to freight transportation: Large-scale discrete optimization problems Subject to uncertainty Similar problem instances solved repeatedly over time

The Economist, January 14th 2022

© Emma Frejinger

Decision-making process, traditionally deterministic models and done in silos

Pervasive issues arise when facing uncertainty

© Emma Frejinger

Endogeneity perturbs the entire decision-making process

Point predictions lead to unexplained variations

Nature rarely follows a "nice" distribution

Deterministic models only control one scenario of the future

Solving stochastic models is challenging

Forecast

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder: End-to-End Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482

©2022 N. Yorke-Smith

der: 75-4482

Background

Motivation and scope problems

ML predictions

Extensive numerical study: ML-L-Shaped gives a speedup of x6 to x167 compared to the best performing exact method Optimality gaps close to zero

© Emma Frejinger

Can we predict useful (expected) information about second-stage problems in two-stage formulations?

Integer linear two-stage stochastic programs with hard second-stage

ML-L-Shaped: replace costly computations in the L-shaped method by

Can we predict useful (expected) information about secondstage problems in two-stage formulations?

- Problem: quickly predict expected descriptions of secondstage problem solutions (synthesis of a solution) conditional on first-stage variables
- Data: large number of (sampled) deterministic secondstage problems solved independently and offline
- Supervised learning: examples available information on instance and synthesized solution

© Emma Frejinger

Can we predict useful (expected) information about secondstage problems in two-stage formulations?

© Emma Frejinger

Can we predict useful (expected) information about secondstage problems in two-stage formulations?

- Prediction accuracy close lower bounds computed using sample average approximation
- Predictions generated in milliseconds

© Emma Frejinger

Can we predict useful (expected) information about secondstage problems in two-stage formulations? Yes.

WH CΔRF7

ANDREA LOD

© Emma Frejinger

- Predictions useful for real-time applications or as part of another algorithm (solve two/multi-stage problem)
 - Avoids online generation of multiple second-stage scenarios and solutions
- Easy to implement in practice (standard supervised) learning and a general purpose solver)
 - ERIC LARSEN, SÉBASTIEN LACHAPELLE, YOSHUA BENGIO, EMMA FREJINGER, SIMON LACOSTE-JULIEN AND
 - Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information, IJOC 34(1):227-242, 2021.

Motivation and scope second-stage problems

© Emma Frejinger

Integer linear two-stage stochastic programs with hard

General two-stage linear stochastic program (notation follows e.g. Angulo et al., 2016)

$$\min_{\substack{x,z,\theta}} \{cx + dz + \theta\}$$
s.t.
$$Ax + Cz \leq b, \qquad (1)$$

$$Q(x) - \theta \leq 0, \qquad (2)$$

$$x \in \{0,1\}^n, \qquad (3)$$

$$z \geq 0, \quad z \in \mathbb{Z}, \qquad (4)$$

Second-stage cost of x with respect to random data $\xi = (q_{\xi}, W_{\xi}, T_{\xi}, h_{\xi})$ with **finite support**

$$Q(x) :\equiv \mathbb{E}_{\xi} [\min_{y} \{ q_{\xi} y : W_{\xi} y \ge h_{\xi} - T_{\xi} x, y \in \mathcal{Y} \}]$$

Integrality constraints on y

$$= \sum_{\xi} p_{\xi} Q_{\xi}(x)$$

SCOPE

Two-stage stochastic programming

- E.g., tactical planning with second-stage operational planning problem (relatively complete recourse)
- Costly integer second-stage problems
- High level of uncertainty large number of scenarios

Master (first-stage) problem

$$\min_{\substack{x,z,\theta}} \{cx + dz + \theta\}$$
s.t. (1), (3), (4),

$$\Pi x - \mathbf{1}\theta \leq \pi_0,$$

$$\theta \geq L$$

Integer L-shaped optimality cut at
$$x^*$$
 where
 $S(x^*) := \{i : x_i^* = 1\}$ and L lower bound on $Q(x^*)$
 $(Q(x^*) - L) \left(\sum_{i \in S(x^*)} x_i - \sum_{i \notin S(x^*)} x_i - |S(x^*)|\right) + Q(x^*) \le \theta$

Subgradient cut given by continuous relaxation Q(x) of Q(x)

$$s(x - x^*) + \tilde{Q}(x^*) \le \theta$$

Subgradient s of Q(x) at x^*

RELATED WORK

- Exact methods
- Integer L-shaped method (Laporte and Louveaux, 1993)
- L-shaped method with alternating cut strategy (Angulo et al., 2016) Avoid costly
 - computations of Q(x) by first checking feasibility, if infeasible add subgradient cut
- Heuristics, e.g.,

- Progressive hedging (Rockafellar and Wets, 1991, Watson and Woodruff, 2011)
 - Dual decomposition (Carøe and Schultz, 1999)
- Neur2SP (Dumouchelle et al., 2022) © Emma Frejinger

ML-L-Shaped: replace costly computations in the L-shaped method by ML predictions

© Emma Frejinger

Integer L-shaped optimality cut at candidate
solution
$$x^*$$
 where $S(x^*) := \{i : x_i^* = 1\}$ and L
lower bound on $Q(x^*)$
 $(Q(x^*) - L) \left(\sum_{i \in S(x^*)} x_i - \sum_{i \notin S(x^*)} x_i - |S(x^*)|\right) + Q(x^*) \le \theta$

Continuous L-shaped (subgradient) optimality mono-cut (Birge and Louveaux, 2011)

$$\mathbb{E}_{\xi}[\phi(h_{\xi} - T_{\xi}x) - \mathbf{1'}\psi] \le \theta$$

 ϕ and ψ are solutions to the dual of the continuous relaxation of subproblem at x^*

Predictions

 $Q^{ML}(x^*)$ Subproblem value $Q(x^*)$ $\widetilde{Q}^{ML}(x^*)$ Relaxed subproblem value $\hat{Q}(x^*)$

 ϕ^{ML}, ψ^{ML} Solutions ϕ and ψ , respectively

IDEA

- Solve problem instances stemming from a distribution of instances sharing similar characteristics
- Matheuristic
 - L-shaped method with or without alternating cuts
- Costly computations replaced by fast machine learning predictions

© Emma Frejinger

Implementation

C-language bindings launch GPU computations returning ML predictions

ML-L-SHAPED

ML-Standard-L-Shaped

Compute prediction of $Q(x^*)$

Shift coefficient: Control bias against rejection of valid first-stage integral candidate solutions

if
$$\mu Q^{ML}(x^*) \leq \theta^*$$

© Emma Frejinger

Algo	rithm 2 Benders decomposition: Heuristic	callback
1: p	rocedure HEURISTICCALLBACK $(isAlt, \mu, $	$oldsymbol{ u})$
2:	if ! <i>isAlt</i> then	
3:	go to 10	
4:	end if \sim	
5:	Compute predictions $Q^{ML}(x^*), \phi^{ML}, \psi^{ML}$	^L \triangleright Alternating cut
6:	$ if \ \mu \widetilde{Q}^{ML}(x^*) > \theta^* \ then $	
7:	Add a heuristic continuous L-shaped	mono-cut
8:	return	
9:	end if	
10:	Compute prediction $Q^{ML}(x^*)$	\triangleright Integer L-shaped
11: 🛑	$ if \ \nu Q^{ML}(x^*) \leq \theta^* \ then $	
12:	if $cx^* + dz^* + \theta^* < UB$ then	
13:	$UB \leftarrow cx^* + cx^* + \theta^*$	\triangleright Update upper
14:	$(x^{**}, z^{**}) \leftarrow (x^*, z^*)$	\triangleright Update incumbent
15:	return	
16:	end if	
17:	else	
18:	Add a heuristic integer L-shaped cut	
19:	return	
20:	end if	
21:	return	
22: e	nd procedure	

Implementation

C-language bindings launch GPU computations returning ML predictions strategy

method

bound solution

ML-L-SHAPED

ML-AlternatingCut-L-Shaped

Compute prediction of $\tilde{Q}(x^*), \phi, \psi$ Shift coefficient: Control bias against rejection of valid first-stage integral candidate solutions

if $\nu \widetilde{Q}^{ML}(x^*) > \theta^*$

© Emma Frejinger

Algorithm 2 Benders decomposition: Heuristic ca	llback
1: procedure HEURISTICCALLBACK $(isAlt, \mu, \nu)$	
2: if <i>isAlt</i> then	
3: go to 10	
4: end if	
5: Compute predictions $\tilde{Q}^{ML}(x^*), \phi^{ML}, \psi^{ML}$	\triangleright Alternating cut s
6: if $\mu \widetilde{Q}^{ML}(x^*) > \theta^*$ then	
7: Add a heuristic continuous L-shaped mo	no-cut
8: return	
9: end if	
10: Compute prediction $Q^{ML}(x^*)$	▷ Integer L-shaped
11: if $\nu Q^{ML}(x^*) \leq \theta^*$ then	
12: if $cx^* + dz^* + \theta^* < UB$ then	
13: $UB \leftarrow cx^* + cx^* + \theta^*$	\triangleright Update upper
14: $(x^{**}, z^{**}) \leftarrow (x^{*}, z^{*})$ \triangleright	Update incumbent a
15: return	
16: end if	
17: else	
18: Add a heuristic integer L-shaped cut	
19: return	
20: end if	
21: return	
22: end procedure	

Implementation

C-language bindings launch GPU computations returning ML predictions

strategy

method

 \cdot bound solution

ML-L-SHAPED

- Feasible solution guarantee: in (unlikely) event of failure, resolve using decreasing values of µ and v
- Two-phase variants
 - Exact: warm start with heuristic solution
 - Warm start with heuristic solution and a probabilistic lower bound (10% one-sided Chebyshev lower confidence bound based on the distribution of exact first-stage values in distinct dataset)

© Emma Frejinger

Alg	gorithm 2 Benders decomposition: Heuristic callback									
1:	procedure HeuristicCallback $(isAlt, \mu, \nu)$									
2:	$ if \ !isAlt \ then \\$									
3:	go to 10									
4:	end if	-								
5:	Compute predictions $Q^{ML}(x^*)$, ϕ^{ML} , $\psi^{ML} \triangleright$ Alternating cut strategy									
6:	$\mathbf{if} \ \mu \widetilde{Q}^{ML}(x^*) > \theta^* \ \mathbf{then}$									
7:	Add a heuristic continuous L-shaped mono-cut									
8:	return									
9:	end if									
10:	Compute prediction $Q^{ML}(x^*)$ \triangleright Integer L-shaped method									
11:	if $\nu Q^{ML}(x^*) \leq \theta^*$ then									
12:	$\mathbf{if} \ cx^* + dz^* + \theta^* < UB \mathbf{then}$									
13:	$UB \leftarrow cx^* + cx^* + \theta^*$ \triangleright Update upper bound									
14:	$(x^{**}, z^{**}) \leftarrow (x^*, z^*)$ > Update incumbent solution									
15:	return									
16:	end if									
17:	else									
18:	Add a heuristic integer L-shaped cut									
19:	return									
20:	end if									
21:	return									
22:	end procedure									

In exact version, alternating cuts

designed to avoid costly computations of $Q(x^*)$

ALGORITHMS — REMARKS

- Learning to predict $Q(x^*)$ is easier than learning to predict $\tilde{Q}(x^*)$, ϕ and ψ
- Predictions are very fast to compute (a few milliseconds)
 - Invariant with respect to number of scenarios
 - Nearly constant across instances and these tasks
- A priori favours the ML-based matheuristic version of the standard integer L-shaped method over alternating cut strategy (except when firststage problem is hard)

Generation of training/validation data for supervised learning

{instance, solution} examples

Instances

- 1. Parametrize (deterministic and stochastic problem data)
- 2. Pseudo-random sampling

Solutions

\$\$\$ a) Solve (expectation over all scenarios)

Q(x)

 $Q(x), \phi, \psi$

b) Solve for each scenario independently (Larsen et al., 2021)

GENERAL REMARKS ON ML

- Training/validation data distribution should cover problem instances that are relevant to the application at hand (simulated and/or historical data)
- Input structure

- Instance description
- Size reduction and normalization of values
- Output structure
 - Integer L-shaped cuts (output in \mathbb{R})
 - **Continuous L-shaped cuts**
 - Size reduction (naive potentially large size) © Emma Frejinger

Extensive numerical study: Large speedups when there is a large number of scenarios Optimality gaps close to zero

© Emma Frejinger

Stochastic Server Location Problem – SSLP(n,m,k)

Relatively easy 1st stage

All second-stage coefficients are deterministic except right-hand side of some constraints

Relatively hard 2nd stage

Stochastic Multiple Binary Knapsack Problem – SMKP

Relatively hard 1st stage

All second-stage coefficients are deterministic except those in the objective function

Relatively easy 2nd stage

PROBLEM CLASSES

- Benchmark instances from Angulo et al. (2016) available in SIPLIB (Ahmed et al., 2015)
- Stochastic Server Location Problem SSLP (n,m,k)
 - Locate n servers to satisfy m customers, k scenarios
 - Good candidate for the proposed methodology
- Stochastic Multiple Binary Knapsack Problem

© Emma Frejinger

Hardest instances * from the literature (and make 2nd stage harder)

Parametrize and generate data for training / validation

SSLP(15,45,15)* SSLPF(15,45,150) SSLPF(15,80,150) SSLP(10,50,2000)*

Input: server capacities and coupling binaries (\mathbb{N}^{20} or \mathbb{N}^{30})

Output: R

SMKP(29)*

SMKP(30)*

(No solution in Angulo et al. (2016)

20 scenarios

Naive Input: \mathbb{N}^{600} reduced to \mathbb{R}^5 Output: reduced to \mathbb{R}^7

Supervised learning

Test performance on **100 instances**

Basic deep learning (feed forward nets) Prediction time: few milliseconds

Std MAE < 1%

Alt MAE < 7.5% Std MAE < 1%

© Emma Frejinger

RESULTS — KEY TAKEAWAYS

- SSLP (ML-Standard-L-Shaped)
 - Average speed up: x11 x167 compared to exact
 - < 0.000)

- SMKP (ML-AlternatingCuts-L-Shaped)
 - Shaped
 - First-stage solution quality: average optimality gaps < 0.08%, PH</p> slightly worse (~0.2%)
 - while PH is not

First-stage solution quality: average optimality gaps < 2% (median)</p>

x6-x7 compared to exact, but PH is x8-x14 compared to ML-L-

Speed of our method is invariant wrt the number of scenarios,

© Emma Frejinger

RESULTS — SSLP

- ML-based matheuristic version of the standard integer L-shaped method
- Average speed up
 - \blacktriangleright x11 x167 compared to exact
- First-stage solution quality
 - Excluding index, average optimality gaps < 2% (median < 0.000)

Problem family	Our		Exact		PH		Problem family	Our]	PH
	avg	std. err	avg	std. err	avg	std. err		avg	std. err	avg	std. e
$(10,\!50,\!2000)$	0.93	(0.08)	156.06	(2.89)	224.44	(12.29)	(10, 50, 2000)	0.006	(0.003)	0.078	(0.01)
(10, 50, 2000)index	0.85	(0.08)	_	—	_	—	(10, 50, 2000)index	2.609	(0.242)	_	
$(15,\!45,\!15)$	0.45	(0.01)	5.25	(0.11)	24.80	(2.26)	(15, 45, 15)	0.064	(0.019)	0.005	(0.00)
$(15,\!45,\!150)$	0.55	(0.01)	34.95	(0.57)	36.69	(2.08)	(15, 45, 150)	1.943	(1.150)	0.053	(0.00)
$(15,\!80,\!15)$	4.12	(0.29)	58.55	(3.15)	48.88	(4.59)	$(15,\!80,\!15)$	0.075	(0.018)	0.119	(0.05)

Optimality gaps (%)

RESULTS — SSLP

Number of integral second-stage problems

		A	lt-L			ML-L	-Shaped			ML-L-Shape	ed/Alt-L ratio)
Problem family		Quantile	\mathbf{s}			Quantiles			Quantiles			
	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg
SSLPF(10,50,2000)	56.00	65.00	82.90	66.73	381.00	417.00	455.95	419.17	514.06%	643.20%	756.01%	636.07%
				(0.88)				(2.73)				(7.14%)
\mathbf{SSLPF} -indx $(10, 50, 2000)$	56.00	65.00	82.90	66.73	327.10	402.00	467.00	401.16	475.16%	621.40%	733.87%	608.65%
				(0.88)				(3.98)				(8.06%)
$\mathbf{SSLPF}(15, 45, 15)$	52.00	63.00	79.95	64.06	1075.05	1243.50	1601.55	1289.88	1563.66%	1973.50%	2749.83%	2052.07%
				(0.96)				(17.59)				(38.41%)
SSLPF(15,45,150)	57.05	70.00	86.00	70.29	1006.25	1259.00	1582.85	1266.55	1289.20%	1791.57%	2556.04%	1828.42%
				(0.84)				(24.91)				(42.47%)
$\mathbf{SSLPF}(15,\!80,\!15)$	37.10	72.00	89.95	70.26	4952.95	6052.00	13922.15	6641.81	6587.86%	8504.23%	18138.67%	9875.65%
				(1.48)				(221.40)				(362.88%)

Number of relaxed second-stage problems

	Alt-L					ML-L-	Shaped		M	L-L-Shape	ed/Alt-L r	ratio
Problem family	Quantiles			(Quantiles			Quantiles				
	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg
SSLPF $(10,50,2000)$	364.00	406.00	460.95	408.13	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(2.97)				(0.00) $ $				(0.00%)
SSLPF-indx(10,50,2000)	364.00	406.00	460.95	408.13	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(2.97)				(0.00) $ $				(0.00%)
SSLPF(15,45,15)	933.15	1047.50	1347.20	1084.63	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(14.04)				(0.00)				(0.00%)
SSLPF(15,45,150)	924.70	1089.00	1392.25	1115.20	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(15.40)				(0.00) $ $				(0.00%)
$\mathbf{SSLPF}(15,\!80,\!15)$	5432.45	6234.00	7711.50	6308.44	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(65.66)				(0.00)				(0.00%)
· · · · · · · · · · · · · · · · · · ·									· ~ ·	~ ·	- ·	· · · ·

Standard L-Shaped version of ML-L-Shaped

Number of integral secondstage problems comparable to number of relaxed secondstage problems of exact method with alternating cuts

RESULTS — SSLP

Total time spent in integral second-stage p

		A	.t-L			ML-L-	Shaped		ML-L-Shaped/Alt-L ratio			
Problem family		Quantiles			Quantiles				Quantiles			
	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg
SSLPF(10,50,2000)	26439.20	36704.00	63863.85	42256.11	568.05	622.00	709.55	632.82	1.02%	1.77%	2.32%	1.69%
				(2867.43)				(6.44)				(0.04%)
$\mathbf{SSLPF}\text{-}\mathrm{indx}(10,\!50,\!2000)$	26439.20	36704.00	63863.85	42256.11	530.25	643.50	772.35	647.42	1.09%	1.73%	2.34%	1.73%
				(2867.43)				(7.89)				(0.04%)
$\mathbf{SSLPF}(15, 45, 15)$	269.50	511.50	1434.75	633.63	1606.10	1845.50	2268.75	1876.13	141.95%	357.32%	684.90%	370.39%
				(34.56)				(21.33)				(16.43%)
$\mathbf{SSLPF}(15,\!45,\!150)$	2140.10	3851.00	7380.75	4097.17	1539.75	1891.50	2339.10	1886.55	27.87%	48.97%	87.26%	51.92%
				(166.85)				(33.91)				(1.82%)
$\mathbf{SSLPF}(15,\!80,\!15)$	2492.65	9765.00	84545.40	20430.97	4882.90	5599.50	10086.90	5921.83	8.76%	57.08%	245.03%	90.41%
				(2999.29)				(131.59)				(10.39%)
	11									~ /		

Total time spent in relaxed second-stage problems (ms)

	Alt-L					ML-L	-Shaped		ML-L-Shaped/Alt-L ratio			
Problem family	olem family Quantiles				Quantiles				Quantiles			
	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg	0.05	0.5	0.95	Avg
SSLPF(10,50,2000) $ $	591539.95	667071.00	749049.35	664969.61	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(5065.41)				(0.00)				(0.00%)
$\boxed{\text{SSLPF-indx}(10,50,2000)}$	591539.95	667071.00	749049.35	664969.61	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(5065.41)				(0.00)				(0.00%)
SSLPF(15,45,15)	22277.30	25686.50	34244.55	26816.72	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(480.28)				(0.00)				(0.00%) $ $
SSLPF(15, 45, 150)	142335.25	172721.50	223728.10	177046.35	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(2736.33)				(0.00)				(0.00%) $ $
SSLPF(15,80,15)	180629.90	209324.00	250452.65	210419.66	0.00	0.00	0.00	0.00	0.00%	0.00%	0.00%	0.00%
				(2140.48)				(0.00)				(0.00%)

prob	ems	(ms)	

High speed offsets the larger number of integral second-stage problems

RESULTS — SMKP

- ML-based matheuristic version of the L-shaped method with alternating cuts
- Average speed up
 - x6-x7 compared to exact, but PH is x8-x14 compared to ours
- First-stage solution quality
 - Average optimality gaps < 0.08%, PH slightly worse (~0.2%)</p>
 - Speed of our method is invariant wrt the number of scenarios, while PH is not

Computing time (s)

Problem family	С	Jur	Ex	act	PH		
	avg	std. err	avg	std. err	avg	std. err	
(29) 20 scenarios	175.56	(18.20)	1237.13	(124.28)	21.17	(0.33)	
(30) 20 scenarios	328.41	(56.51)	2137.45	(257.23)	22.49	(1.00)	
(29) 2000 scenarios				_	484.57	(98.27)	
(30) 2000 scenarios	_	—	_	_	372.60	(80.58)	

Optimality gaps (%)

Problem family	(Dur	PH			
	avg	std. err	avg	std. er		
(29)	0.008	(0.002)	0.223	(0.009)		
(30)	0.005	(0.001)	0.224	(0.008)		

CONCLUSIONS

- predictions
 - - scenarios

Replacing costly computations by fast ML

Large reductions in computing time compared to best performing exact method, especially when second-stage problems are hard / large number of

Online prediction time invariant to the number of scenarios (but not offline data generation)

High-quality solution

First version of the paper – arXiv:2205.00897

Future work: sample efficiency, account for prediction errors, real-world problems

© Emma Frejinger

Thank you!

emma.frejinger@umontreal.ca emmafrejinger.org

- Ahmed, S., Garcia, R., Kong, N., Ntaimo, L., Parija, G., Qiu, F., and Sen, S. SIPLIB: A stochastic integer programming test problem library, 2015. URL: https:// www2.isye.gatech.edu/~sahmed/siplib
- Angulo, G., Ahmed, S., and Dey, S. S. Improving the integer L-shaped method. INFORMS Journal on Computing, 28(3):483-499, 2016.
- Carøe, C. C. and Schultz, R. Dual decomposition in stochastic integer programming. Operations Research Letters, 24(1):37-45, 1999.
- Rockafellar, R. T. and Wets, R. J.-B. Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research, 16(1): 119–147, 1991.
- ▶ Watson, J.-P. and Woodruff, D. L. Progressive hedging innovations for a class of stochastic mixed-integer resource allocation problems. Computational Management Science, 8(4):355-370, 2011.

