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Hard landing

Coronavirus is grounding the world’s
airlines

The aviation industry may not fullv recover from the effects of the pandemic

Economist.com

The Economist, March 15th 2020 The Economist, January 14th 2022

Characteristics of many decision-making problems related to freight transportation:
Large-scale discrete optimization problems
Subject to uncertainty

Similar problem instances solved repeatedly over time © Emma Frejinger



Decision-making process, traditionally
deterministic models and done In silos

PREDICT OPTIMIZE DECIDE INTERACT

Prediction from data
mainly from
supervised learning
based on traditional
prediction objectives

Deterministic models Actual decision Implementation in a
leveraging point making based on physical environment
predictions suggested solutions

(human in the loop)
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== Delage, Adulyasak, Frejinger (2021)
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Pervasive Issues arise when facing uncertainty

PREDICT

~ ~ ~ ~
ﬂ’ OPTIMIZE ﬁ’ DECIDE ﬂ’ INTERACTQ?’

2 @

Decision maker is not The past does not
risk neutral predict the future

Point predictions lead Deterministic models

to unexplained only control one
variations scenario of the future Stochastic models are Post-decision
over simplified or too disappointment

Nature rarely follows a Solving stochastic
obscure

“nice” distribution models is challenging
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Endogeneity perturbs the entire decision-making
process

PREDICT OPTIMIZE DECIDE INTERACT Y0

Statistical vs. causal Optimization under Challenging trade-offs Decisions bring the
dependencies decision-dependent between exploration environment in states
uncertainty is extra and exploitation for which we have no

challenging data
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Forecast Solution Execution

)
Data &=

== Delage, Adulyasak, Frejinger (2021)

© Emma Frejinger



OPTIMIZE Q?"

Deterministic models
only control one
scenario of the future

Solving stochastic
models is challenging

® >

Solution
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A ~— Delage, Adulyasak, Frejinger (2021)
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CO-augmented ML CO ”.”‘?‘."e'
acquisition

A

ML-augmented - End-to-End CO
CO Learning
» l
Combinatorial
Optimization [ J Decision focussed
| learning

Continuous Learning to Learning

optlmlzat.on Branch and Cut Heuristics

Matheuristic

'

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder:
End-to-End Constrained Optimization Learning: A Survey. |[IJCAI 2021: 4475-4482

(©2022 N. Yorke-Smith
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Background

Can we predict useful (expected) information about second-stage
problems in two-stage formulations?

Motivation and scope

Integer linear two-stage stochastic programs with hard second-stage
problems

ML-L-Shaped: replace costly computations in the L-shaped method by
ML predictions

Extensive numerical study: ML-L-Shaped gives a speedup of x6 to x167
compared to the best performing exact method

Optimality gaps close to zero



Can we predict useful (expected) information about second-
stage problems in two-stage formulations?

» Problem: quickly predict expected descriptions of second-
stage problem solutions (synthesis of a solution)
conditional on first-stage variables

» Data: large number of (sampled) deterministic second-
stage problems solved independently and offline

» Supervised learning: examples — available information on
instance and synthesized solution

© Emma Frejinger



Can we predict useful (expected) information about second-
stage problems in two-stage formulations?

Problem
instance

y*(x) = arg min C(X,,X,,y)

y*(xa) = gl(y*(xa, Xu)) - .

Y4(X,) = g7(¥*(X, X,)

©
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solution 1

solution 2

© Emma Frejinger
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Can we predict useful (expected) information about second-
stage problems in two-stage formulations?

» Prediction accuracy close lower bounds computed using
sample average approximation

» Predictions generated in milliseconds

© Emma Frejinger
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Can we predict useful (expected) information about second-
stage problems in two-stage formulations? Yes.

» Predictions useful for real-time applications or as part
of another algorithm (solve two/multi-stage problem)

» Avoids online generation of multiple second-stage
scenarios and solutions

» Easy to implement in practice (standard supervised
learning and a general purpose solver)

ERIC LARSEN, SEBASTIEN LACHAPELLE, YOSHUA BENGIO,
EMMA FREJINGER, SIMON LACOSTE-JULIEN AND
ANDREA LODI

Predicting Tactical Solutions to Operational Planning Problems
Under Imperfect Information, IJOC 34(1):227-242, 2021.

© Emma Frejinger
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© Emma Frejinger

Motivation and scope

Integer linear two-stage stochastic programs with hard
second-stage problems

13



General two-stage linear stochastic program
(notation follows e.g. Angulo et al., 2016)

min {cx +dz + 0}

x,z,0

s.t. Ax + C'z < b,
Q(z) —0 <0,
r e {0,1}",
2>0, z€Z,

1
2

3
4

(
(
(
(

)
)
)
)
Second-stage cost of x with respect to

random data & = (gg, W, T¢, he) with finite support

Q(z):= Ee¢ [myin{qu : Wey > he — Tex,y € VI

Integrality constraints on y

= ) p:0:(x)
S

SCOPE

» Two-stage stochastic programming

» E.g., tactical planning with second-stage
operational planning problem (relatively
complete recourse)

» Costly integer second-stage problems

» High level of uncertainty — large number of
scenarios

© Emma Frejinger
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Master (first-stage) problem

min {cz + dz + 0} RELATED WORK

x,z,0

s.t. (1),(3), (4),

Iz — 16 < 7y, » Exact methods

0> L » Integer L-shaped method (Laporte and

Louveaux, 1993)

Integer L-shaped optimality cut at x* where ) L-shaped method with alternating cut strateqgy

S@*) :={i:x" =1} and L lower bound on Q(x*) (Angulo etal. 201 6) Avoid COStly

Q") = 1) (g(:)x - ig(;*)xi - 151 + Q) <6 computations of Q(x) by first checking
feasibility, if infeasible add subgradient cut

Subgradient cut given by continuous relaxation > Heuristics, €.g.

~)

() of O) » Progressive hedging (Rockafellar and Wets,
s(x —x*F) + Q(x*) < 0 1991, Watson and Woodruff, 2011)

Subgradient s of Q(x) at x*

» Dual decomposition (Carge and Schultz, 1999)
» Neur2SP (Dumouchelle et al., 2022)

© Emma Frejinger




ML-L-Shaped:
replace costly computations in the L-shaped method by ML
predictions

© Emma Frejinger 16



Integer L-shaped optimality cut at candidate

solution x* where S(x*) := {i : x,-* =1}andL I D EA

lower bound on Q(x*)

-1 ; Ti = g(: v — |S@")]) + Q(a") < 6 » Solve problem instances stemming from a
1eS(x* 1 x*

distribution of instances sharing similar
characteristics

Continuous L-shaped (subgradient) optimality » Matheuristic
mono-cut (Birge and Louveaux, 2011)

Ee[p(he — Tex) — /4] < 6 » L-shaped method with or without alternating

¢ and y are solutions to the dual of the cuts

continuous relaxation of subproblem at x » Costly computations replaced by fast machine
learning predictions

Predictions

QY (z*)  Subproblem value Q(x*)

QM (a¥) Relaxed subproblem value Q(x*)
ngL

, pML Solutions ¢ and y, respectively

© Emma Frejinger
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Algorithm 2 Benders decomposition: Heuristic callback M L L S H AP E D
procedure HEURISTICCALLBACK(tsAlt, p, v) 1 B

1:

2

3

4:

5:

6

7

3 ML-Standard-L-Shaped

9: —ama an
10: Compute prediction Q™ (z*) > Integer L-shaped method
11: if vQML(2*) < 6* then S P sk
12: if cx* +dz* + 60 < UB then p ComPUte predlctlon of Q(X )
3 UB < cx™ +cx” + 0 > Update upper bound — P Shift coefficient: Control bias against
14: (x**, 2%%) « (%, 2%) > Update incumbent solution . . o .
{5: return rejection of valid first-stage integral
[ end if candidate solutions

L7 else

18: Add a heuristic integer L-shaped cut

19: return
20: end if
21: return

22: end procedure

Implementation

C-language bindings launch GPU
computations returning ML predictions

© Emma Frejinger




Algorithm 2 Benders decomposition: Heuristic callback M L L S H AP E D
. procedure HEURISTICCALLBACK (tsAlt, p, V) - -

1

2 if l1sAlt then

3 go to 10 .

. ond if ML-AlternatingCut-L-Shaped

5: Compute predictions QML (%), oML ML Alternating cut strategy

6 if nQML(z*) > 6* then S o ~

7 Add a heuristic continuous L-shaped moino=eut W Compute pred IcCtiOoNn Of Q(-X*)a ¢, v/
8 return — : . . : :
o end if » Shift coefficient: Control bias against
10; f;omgﬂ‘;t;(m;dicgoi hQM’J(x*) > Integer L-shaped method rejection of valid first-stage integral
11: if v x*) < 0" then . .

12 if co* + dz* + 0* < UB then candidate solutions

13: UB <+ cx* + cx* + 0* > Update upper bound

14: (¥, 2"%) « (x*, 2") > Update incumbent solution

15: return

16: end if

17: else

18: Add a heuristic integer L-shaped cut

19: return
20: end if
21: return

22: end procedure

Implementation

C-language bindings launch GPU
computations returning ML predictions

© Emma Frejinger




Algorithm 2 Benders decomposition: Heuristic callback

1: procedure HEURISTICCALLBACK(2sAlt, u, V)

2 if 125 Alt then

3 go to 10

4: end if N

5: Compute predictions QML (x*), oML, ML > Alternating cut strategy
6 if QML (2*) > 0* then

7 Add a heuristic continuous L-shaped mono-cut

8 return

9: end if

10: Compute prediction Q™ (z*) > Integer L-shaped method
11: if vQML(2*) < 6* then

12: if cx* +dz* + 60 < UB then

13: UB <+ cx* + cx* + 0* > Update upper bound
14: (¥, 2"%) « (x*, 2") > Update incumbent solution
15: return

16: end if

17: else

18: Add a heuristic integer L-shaped cut

19: return
20: end if
21: return

22: end procedure

Implementation

C-language bindings launch GPU
computations returning ML predictions

ML-L-SHAPED

» Feasible solution guarantee: in
(unlikely) event of failure, resolve

using decreasing values of ;1 and v
» Two-phase variants

» Exact: warm start with heuristic
solution

Warm start with heuristic solution
and a probabilistic lower bound
(10% one-sided Chebyshev lower
confidence bound based on the
distribution of exact first-stage
values in distinct dataset)

© Emma Frejinger




Algorithm 2 Benders decomposition: Heuristic callback

1: procedure HEURISTICCALLBACK(zsAlt, p, v)

2: if l2sAlt then

ALGORITHMS — REMARKS

4. end 1

5: Compute predictions QML (%), oML, ML > Alternating cut strategy

6:  if pQME(z*) > 6* then

7: Add a heuristic continuous L-shaped mono-cut

N » Learning to predict Q(x*) is easier than learning

10: Compute prediction Q™% (z*) > Integer L-shaped method . ~

1| if vQVE(2*) < 0% then to predict O(x*), ¢ and

12: if cx* +dz* 4+ 0* < UB then p Q( )’ ¢ l/j

13: UB <+ cx* + cx™ + 07 > Update upper bound . .

14 (2, 2) ¢ (", 2°) > Update incumbent solution » Predictions are very fast to compute (a few

15: return

6| endif milliseconds)

18; Add a heuristic integer L-shaped cut . . .

19: return » Invariant with respect to number of scenarios

20: end if

21: return .

22 énd procedure » Nearly constant across instances and these

tasks

In exact version, alternating cuts » A priori favours the ML-based matheuristic
designed to avoid costly computations of version of the standard integer L-shaped method
Q(x™) over alternating cut strategy (except when first-

stage problem is hard)

© Emma Frejinger 21




Generation of training/validation data for

supervised learning GENERAL REMARKS ON ML

{instance, solution} examples

» Training/validation data distribution should
cover problem instances that are relevant to the

‘ Instances application at hand (simulated and/or historical

1. Parametrize (deterministic and stochastic data)
problem data)

2. Pseudo-random sampling g InPUt structure

» Instance description

. » Size reduction and normalization of values
Solutions

$$$ a) Solve (expectation over all scenarios) ) Output structure

Q(x)
. } _ .
O, .y Integer L-shaped cuts (output in R)

$ b)Solve for each scenario independently » Continuous L-shaped cuts
(Larsen et al., 2021) . . . ) )
» Size reduction (naive — potentially large size)

© Emma Frejinger 22




—xtensive numerical study:
Large speedups when there is a large number of scenarios

Optimality gaps close to zero

© Emma Frejinger 23



Stochastic Server Location Problem — SSLP(n,m, k)

PROBLEM CLASSES

Relatively easy
1st stage

» Benchmark instances from Angulo et al.
All second-stage Relatively hard (2016) available in SIPLIB (Ahmed et al., 2015)

coefficients are 2nd stage

deterministic except » Stochastic Server Location Problem SSLP
right-hand side of some (n,m,k)

constraints

» Locate n servers to satisfy m customers, k

scenarios
Stochastic Multiple Binary Knapsack Problem — SMKP

» Good candidate for the proposed

Relatively hard methOdOIOgy

1st stage » Stochastic Multiple Binary Knapsack Problem

All second-stage Relatively easy

coefficients are 2nd stage

deterministic except
those in the objective

function © Emma Frejinger 24




Hardest instances
* from the literature

(and make 2nd
stage harder)

Parametrize and
generate data for
training / validation

Supervised
learning

Basic deep learning
(feed forward nets)

Prediction time: few
milliseconds

Results

Test performance on
100 instances

SSLP(15,45,15)*

SSLPF(15,45,150)
SSLPF(15,80,150)

SSLP(10,50,2000)*

Input: server capacities
and coupling binaries

(N*? or N°9)

Output: R

SMKP(29)*

SMKP(30)*
(No solution in Angulo et al. (2016)

20 scenarios

Naive Input: N%,
reduced to R

Output: reduced to R’

Alt MAE < 7.5%
Std MAE < 1%

© Emma Frejinger
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RESULTS — KEY TAKEAWAYS

» SSLP (ML-Standard-L-Shaped)

@ » Average speed up: x11 -x167 compared to exact
» First-stage solution quality: average optimality gaps < 2% (median

< 0.000)

» SMKP (ML-AlternatingCuts-L-Shaped)

» x6-x7 compared to exact, but PH is x8-x14 compared to ML-L-
Shaped

» First-stage solution quality: average optimality gaps < 0.08%, PH
slightly worse (~0.2%)

# Scenarios

» Speed of our method is invariant wrt the number of scenarios,

while PH is not © Emma Frejinger

26



RESULTS — SSLP

» ML-based matheuristic version of the standard integer L-shaped method

» Average speed up
» x11 -x167 compared to exact

» First-stage solution quality

» Excluding index, average optimality gaps < 2% (median < 0.000)

Computing time (s) Optimality gaps (%)

Problem family Exact Problem family
aveg . avg std. err aveg std err avg std err aveg std err

10,50,2000) 10,50,2000)

10,50 2000)mdex 10,50 2()()())1ndex

15,45,150)

15,45,150)
15,80,15)

15,80,15)

( (
( - (
(15,45,15) . . . | | . (15,45,15)
( (
( (




RESULTS — SSLP

Number of integral second-stage problems

Alt-L ML-L-Shaped ML-L-Shaped /Alt-L ratio
Problem family Quantiles Quantiles Quantiles
0.05 05 095 | Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg
SSLPF(10,50,2000) 56.00 65.00 82.90 | 66.73 || 381.00 417.00 455.95 || 419.17 || 514.06% 643.20%  756.01% | 636.07%
(0.88) (2.73) | (7.14%)
SSLPF-indx(10,50,2000) | 56.00 65.00 82.90 | 66.73 | 327.10 402.00  467.00 | 40116 | 475.16% 621.40%  733.87% | 608.65%
(0.88) (3.98) (8.06%)
SSLPF(15,45,15) 52.00 63.00 79.95 | 64.06 || 1075.05 1243.50 1601.55 || 1289.88 | 1563.66% 1073.50% 2749.83% | 2052.07%
(0.96) (17.59) | (38.41%) ) :
SSLPF(15,45,150) 57.05 70.00 86.00 | 70.29 || 100625 1250.00 1582.85 || 1266.55 | 1280.20% 179157% 2556.04% | 1828.42% Standard L-Shaped version of
(0.84) (24.91) | (42.47%) ML-L-Shaped
SSLPF(15,80,15) 37.10 72.00 80.95 | 70.26 || 4952.05 6052.00 13922.15 | 6641.81 || 6587.86% 8504.23% 18138.67% | 9875.65%
(1.48) (221.40) | (362.88%)
Number of relaxed second-stage problems
Alt-L ML-L-Shaped ML-L-Shaped/Alt-L ratio Number of integ ral second-
Problem family Quantiles Quantiles Quantiles
0.05 0.5 0.95 Ave | 005 05 095 | Ave | 0.05 0.5 0.95 Avg stage problems comparable to
SSLPF(10,50,2000) 364.00 406.00 460.95 | 408.13 [ 0.00 0.00 0.00 | 0.00 [ 0.00% 0.00%  0.00% | 0.00% number of relaxed second-
- (2.97) (0.00) (0.00%)
SSTPF-indx(10,50,2000) || 364.00 406.00 460.95 | 408.13 || 0.00 0.00 0.0 | 0.00 | 0.00% 0.00% 0.00% | 0.00% stage problems of exact
(2.97) | (0.00) (0.00%) method with alternating cuts
SSLPF(15,45,15) 933.15  1047.50 1347.20 | 1084.63 | 0.00 0.00 0.0 | 0.00 [[0.00% 0.00% 0.00% | 0.00%
(14.04) | (0.00) (0.00%)
SSLPF(15,45,150) 02470 1089.00 1392.25 | 111520 || 0.00 0.00 0.00 | 0.00 || 0.00% 0.00% 0.00% | 0.00%
(15.40) (0.00) (0.00%)
SSLPF(15,80,15) 5432.45 6234.00 7711.50 | 630844 || 0.00 0.00 0.00 | 0.00 [[0.00% 0.00% 0.00% | 0.00%
- (65.66) | (0.00) (0.00%)




RESULTS — SSLP

Total time spent in integral second-stage problems (ms)

Alt-L ML-L-Shaped ML-L-Shaped /Alt-L ratio

Problem family Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg
SSLPF(10,50,2000) 26439.20 36704.00 63863.85 | 42256.11 568.05 622.00 709.55 0632.82 1.02% 1.77% 2.32% 1.69%
(2867.43) (6.44) (0.04%)
SSLPF-indx(10,50,2000) || 26439.20 36704.00 63863.85 | 42256.11 530.25 643.50 772.35 647.42 1.09% 1.73% 2.34% 1.73%
(2867.43) (7.89) (0.04%)
SSLPF(15,45,15) 269.50 511.50 1434.75 633.63 1606.10 1845.50  2268.75 1876.13 141.95% 357.32% 684.90% | 370.39%
(34.56) (21.33) (16.43%)
SSLPF(15,45,150) 2140.10 3851.00 7380.75 4097.17 1539.75 1891.50 2339.10 1886.55 || 27.87% 48.97% 87.26% 51.92%
(166.85)  (33.91) (1.82%)
SSLPF(15,80,15) 2492.65 9765.00  84545.40 | 20430.97 || 4882.90 5599.50 10086.90 @ 5921.83 8.76% 57.08%  245.03% | 90.41%
(2999.29) (131.59) (10.39%)

Total time spent in relaxed second-stage problems (ms)
Alt-L E ML-L-Shaped ML-L-Shaped /Alt-L ratio

Problem family Quantiles Quantiles Quantiles
0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg 0.05 0.5 0.95 Avg
SSLPF(10,50,2000) 591539.95 667071.00 749049.35 | 664969.61 | 0.00  0.00 0.00 0.00 0.00% 0.00%  0.00% 0.00%
(5065.41) (0.00) (0.00%)
SSLPF-indx(10,50,2000) || 591539.95 667071.00 749049.35 | 664969.61 | 0.00  0.00 0.00 0.00 0.00% 0.00%  0.00% 0.00%
(5065.41) (0.00) (0.00%)
SSLPF(15,45,15) 22277.30  25686.50  34244.55 | 26816.72 | 0.00  0.00 0.00 0.00 0.00% 0.00%  0.00% 0.00%
(480.28) (0.00) (0.00%)
SSLPF(15,45,150) 142335.25 172721.50 223728.10 | 177046.35 | 0.00  0.00 0.00 0.00 0.00% 0.00%  0.00% 0.00%
(2736.33) (0.00) (0.00%)
SSLPF(15,80,15) 180629.90 209324.00 250452.65 | 210419.66 || 0.00  0.00 0.00 0.00 0.00% 0.00%  0.00% 0.00%
(2140.48) (0.00) (0.00%)

High speed offsets the
larger number of integral
second-stage problems



RESULTS — SMKP

» ML-based matheuristic version of the L-shaped method with alternating cuts
» Average speed up

» x6-x7 compared to exact, but PH is x8-x14 compared to ours
» First-stage solution quality

» Average optimality gaps < 0.08%, PH slightly worse (~0.2%)

» Speed of our method is invariant wrt the number of scenarios, while PH is not

Computing time (s) Optimality gaps (%)

Our Exact Problem family Our PH
avg std. err avg  std. err avg std err avg std. err avg std. err
) (29)

175.56  (18.20) | 1237.13 (124.28) 21.17 (0.33 0.008 (0.002) || 0.223  (0.009)
328.41  (56.51) | 2137.45 (257 23) 22.49 (1. (30) 0.005 () 001) || 0.224 () 008)




CONCLUSIONS

» Replacing costly computations by fast ML
predictions

» Large reductions in computing time compared to
best performing exact method, especially when
second-stage problems are hard / large number of

scenarios

» Online prediction time invariant to the number of
scenarios (but not offline data generation)

» High-quality solution
» First version of the paper — arXiv:2205.00897

» Future work: sample efficiency, account for

prediction errors, real-world problems
© Emma Frejinger
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Thank you!

emma.frejinger@umontreal. a
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