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How to Evaluate Al Systems?

George Zarkadakis, Contributor
Al engineer and writer

Move 37, or how Al can change the world
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Ethics Guidelines for Trustworthy Al — Overview

Human-centric approach: Al as a means, not an end

INDEPENDENT

Trustworthy Al as our foundational ambition, with three components HIGH-LEVEL EXPERT GROUP ON
ARTIFICIAL INTELLIGENCE
Lawful Al Ethical Al Robust Al 80,0
* A %
_ ** * X
Three levels of abstraction
.. . ETHICS GUIDELINES
from principles to requirements to assessment FOR TRUC LN TR
(Chapter I) (Chapter 1II) list (Chapter III)

Ilo“ UNKOPINGS  https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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Ethics Guidelines for Trustworthy Al — Principles

4 Ethical Principles based on fundamental rights

Respect for Prevention of Fairness Explicability
human harm
autonomy
Augment, complement Safe and secure. Equal and just Transparent, open
and empower humans Protect physical and distribution of with capabilities and
mental integrity. benefits and costs. purposes, explanations

Il.u UNKOPINGS. https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
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A risk-based approach

Unacceptable risk

e.g. social scoring ——  Prohibited

Permitted subject to compliance

High risk with Al requirements and ex-ante
[ e e.g. recruitment, medical conformity assessment
I *Not mutua"y j devices
I exclusive g g
————m e e mm a4 ‘Transparency’ risk Permitted but subject to
‘Impersonation’ (bots) —— information/transparency
obligations
Minimal ornorislkk  —— Permitted with no restrictions

7 4
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Requirements for high-risk Al systems 2
(Title [ll, Chapter 2)

Establish and
implement risk
management
system

&

in light of the
intended

purpose of the
Al system

Use high-quality training, validation and testing data (relevant, representative etc.)

Draw up technical documentation & set up logging capabilities (traceability & auditability) >

Ensure appropriate degree of transparency and provide users with information on capabilities
and limitations of the system & how to use it

Ensure robustness, accuracy and cybersecurity

Ensure human oversight (measures built into the system and/or to be implemented by users)>
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/ TAILOR — Vision

Develop the scientific

foundations for Trustworthy Al
integrating learning, optimisation
and reasoning

realising the European Vision of
human-centered trustworthy Al.
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Boosting Capacity to Tackle Major Scientific Challenges -

* A core network of outstanding Al research centres and major European
companies (partners) plus mechanisms for extending the network
(network members and connectivity fund) to be adaptive and inclusive.

* Five virtual research environments to address the major scientific
challenges required to achieve Trustworthy Al supported by Al-based
network collaboration tools.

* Strategic research and innovation roadmap to drive the long-term
scientific vision combined with bottom-up coordinated actions
collaboratively addressing specific research questions.

This project is funded by the EC o _ I LINKOPINGS
under H2020 ICT-48 Fredrik Heintz, 2022-11-02 ELLIIT WS on Hybrid Al 9 l.u HRNIRICS.
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Human and Computational Thinking -

Figure 1: A Comparison of System 1 and System 2 Thinking

System 1
“Fast”

DEFINING CHARACTERISTICS
Unconscious
Effortless
Automatic

WITHOUT self-awareness or control
“What you see is all there is.”

ROLE

Assesses the situation
Delivers updates

System 2
“Slow”

DEFINING CHARACTERISTICS
Deliberate and conscious
Effortful
Controlled mental process

WITH self-awareness or control
Logical and skeptical

ROLE

Seeks new/missing information
Makes decisions

This project is funded by the EC
under H2020 ICT-48

Fredrik Heintz, 2022-11-02 ELLIIT WS on Hybrid Al
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TAILOR — Basic Research Program Py
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e Temporal logics
e Stream reasoning

e Verification and
validation

6 PhD students
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MARCUS OCH AMALIA
WALLENBERGS
MINNESFOND
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Research Overview

Learning generative models based on trajectory data

Probabilistic logical reasoning over observed and predicted
trajectories

Utilitarian Combinatorial Assignment
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Collaborative Unmanned Aircraft Systems

A principled approach to building collaborative
intelligent autonomous systems for complex missions.
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Motion Pattern Recognition

Generalized Motion Pattern Model
* Based on Gaussian processes

* Generative auto-encoder

Multi-task R
* One-class classification

(anomaly detection)

* Multi-class classification _
Sclyldl \otion Pattern

* Predict continuation

* Predict sequence

* Temporally align

trajectories

Observations Mean 20

Trajectories
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Learning generative models based on trajectory data
[Tiger and Heintz IV 2018, Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]
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Learning generative models based on trajectory data
[Tiger and Heintz IV 2018, Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]
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Learning generative models based on trajectory data
[Tiger and Heintz IV 2018, Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]

Local likelihood for each activity

i I - ' i |
0 0.1 0.2 0.3 0.4 0.5 0.8 0.7
Activity with maximum local likelihood

Unexplained intervals

0 0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1

Explained intervals (Amnbiguous:RED, Non-ambiguous:BLUE)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Operation intervals (Create:GREEN, Merge:RED, Update:BLUE
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Learning generative models based on trajectory data
[Tiger and Heintz IV 2018, Tiger and Heintz FUSION 2015, Tiger and Heintz STAIRS 2014]

450 - Flow Field
State-of-the-art Flow Field approach =
400
(P2 Py) = Vx. vy o
With two GP modelled latent functions: 300 f,
]
[vx 1/"y] = [fvx(px: py) fvy(px: py)] 5. 250 -\
20 — Inverse Mapping Approach
Proposed Inverse Mapping approach e —— el AR W
[ 400 |
(prpy) T2 Px Py Vx,Vy 100 350
With five GP modelled latent functions: s , : . , 500
-50 0 50 100 150 200
[px 23] = [5.® £, @) X oo
[Ux vy] = [fvx(T) fvy(f)] 200 ¢
T = fr(Px, Py) 10
where T € [0 1] is parametrized time 0T
(motion pattern progression) 50 F
Models flow, spatial extent, spatial locality and motion progression. 0 ° >0 X 100 b 20
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Probabilistic Predictive Stream Reasoning
[Tiger and Heintz TIME 2016, 1JAR 2020]

pv
> R

Pr(collision now) = 0.0... Pr(collision soon) = 0.5

&

2l

collision: false Pr(collision) = 0.1 Pr(collision) =0.4

Reasoning over Uncertainty Reasoning over Predictions

Mattias Tiger and Fredrik Heintz. 2020.
Incremental Reasoning in Probabilistic Signal Temporal Logic.
International Journal of Approximate Reasoning, 119:325-352. Elsevier.
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Probabilistic Predictive Stream Reasoning
[Tiger and Heintz TIME 2016, 1JAR 2020]

Altitude
[metAers]
always (altitude, >3) L) \
true Y%y,
{77 C’@)
always (Pr(altitude, , > 3) 2 0.99) 3

false

always (Pr(altitude, , > 3) 2 0.99)

N

Relative time to estimate  Relative time to estimate from

LINKOPINGS
II.“ UNIVERSITET



Probabilistic logical reasoning over observed and predicted trajectories
[Tiger and Heintz TIME 2016, IJAR 2020]

* Probabilistic Reasoning | &l a
over i . il
* |sthe UAV inside the no-fly-zone? Uncertainty /r ! /r

collision: false Pr(collision) = 0.1 Pr(collision) = 0.4
* Anticipatory
* Will the UAV be colliding in the near future? Reasoning )%
over :
Predictions % %
Pr(collision now) = 0.0 Pr(collision soon) = 0.5
° Introspective . Estimated state (now)
o o o Reasoning
* Is the prediction similar to the realization? about Predicted state
Predictions

Estimated state
(when predicting)




Introspective Motion Planning and Control &
Challenges Our Approach

Learn models of execution
variations from action sequences

« What is normal behavior?

Monitor executions with respect

o Is the robot behaving normally? i e s e i
. Use models with explicit uncertainty
° Safe; but not task effective? quantification for tight safety-bounds

Monitor models with respect to
executions during deployment

o Are learned models safe to use?

[9] M. Tiger, et al. Enhancing Lattice-Based Motion Planning With Introspective Learning and Reasoning. |EEE Robotics and Automation Letters 6.3 (2021): 4385-4392.



Example Al-Robotics Stack and Simulation Environment

1
! DJI Matrice 100
1

Lattice Trajectory Tracking
Planner Controller (NMPC)

Controlled
System

Lower-level
controller

A 4

1
Mission Task
Planner

« Assumptions
- Safety requirements
« Other requirements

l A 4
Runtime 3D Exploration Monitoring DJI M100
Verification Planner and Learning Simulator

Static Obstacles

A A A A

State Estimator

Virtual sensors (Cameras, LIDAR, IMU, ...)

OctoMap B
T Vi rtual LI DAR :m i “EOHS - 1GOBI*%ZIn RIRDIs. " & LB 3D scanned
B x, 4 environment
Collision ;f G;anso,
detection weden.

<

WASP research
arena for public
safety (WARA-PS)

< ELLIT




Coverage Path Planning for Road Sweeping

Motion Planning Applications

3D Exploration Planning I Coverage Path Planning Large-scale, complex geometry, multi-floor,

slopes, uneven ground, non-trivial space division

Domain adaptation

* Mapping Made efficient by Bayesian ML

* |nspection

e Search for anomalies

[6] M. Selin, M. Tiger, D. Duberg, F. Heintz and P. Jensfelt. Efficient autonomous exploration planning of large-scale 3D environments. |EEE Robotics and Automation Letters 4.2 (2019): 1699-1706.
[7] D. Engelson, M. Tiger and F. Heintz. Coverage Path Planning in Large-scale Multi-floor Urban Environments with Applications to Autonomous Road Sweeping. IEEE ICRA (2022). (Submitted)



Many Publications Related to Different Components

Motion Pattern

Motion Planning

Receding-Horizon Lattice-based Motion Planning with
Dynamic Obstacle Avoidance

. Onkar Ljungaisr™, Matias Tiger'”, Dasicl Axcl
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Efficient Autonomous Exploration Planning of
Large Scale 3D-Environments

Magnus Selin
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Privacy-preserving synthetic data generation
[D. Bergstrom, Md F. Sikder, R. Ramachandranpillai]

" . Non-sensitive data
PENBIENE Learnin CEREIETIE Samplin reserving relevant
Data & Model PINg P 8 )
properties

1. Learn a generative model that captures the probability distribution of the
sensitive data

2. Create a synthetic data set from the generative model that both captures
the salient features of the original data set and is non-sensitive

Methods for verifying that the synthetic data set is accurate enough
4. Methods for verifying that the synthetic data set is non-sensitive

hou s <> ELLIT

@




Synthetic Healthdata — Existing Models, Measures, and Problems

Models Measures Research Gap
« MedGANT[1] e Privacy  Fairness? [4]
* HealthGAN][2] . Utility

* Synthea[3] « Resemblance

1. Armanious, K., Jiang, C., Fischer, M., Kistner, T., Hepp, T., Nikolaou, K., Gatidis, S. and Yang, B., 2020. MedGAN: Medical
image translation using GANs. Computerized medical imaging and graphics, 79, p.101684.

2. Yale, A., Dash, S., Dutta, R., Guyon, |.,, Pavao, A. and Bennett, K.P., 2020. Generation and evaluation of privacy
preserving synthetic health data. Neurocomputing, 416, pp.244-255.

3.  Walonoski, J., Kramer, M., Nichols, J., Quina, A., Moesel, C., Hall, D., Duffett, C., Dube, K., Gallagher, T. and McLachlan,
S., 2018. Synthea: An approach, method, and software mechanism for generating synthetic patients and the synthetic
electronic health care record. Journal of the American Medical Informatics Association, 25(3), pp.230-238.

4. Bhanot, K., Qi, M., Erickson, J.S., Guyon, I. and Bennett, K.P.,, 2021. The problem of fairness in synthetic healthcare
data. Entropy, 23(9), p.1165.
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Our Proposed Solution : Generate fair health data from biased data

* We define a Fair Data Generation Process (FDGP) in Generative Adversarial Networks (GAN) :

g Goals:

Score-based weighte sampling wij respect to some sub-
respect to selecteq g with

SUb-groups groups
Bias-transformin . .
- . Substantive equality

Mut , with respect to some
0 tiua-' 'nforma.t'°"'°°"strained GAN sensitive attributes
Ptimization with réspect to selected

sensitive attributes

DGP

« Data utility
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Results and Discussions

Benchmarks HealthGAN and FairGAN [5]

Evaluation Metric Data utility - Accuracy and F1 score

Downstream fairness (substantive equality) - AUROC gap and
Demographic Parity gap

Fair resemblance - density score
4. https://physionet.org/content/mimiciii/1.4/

5. Xu, D., Yuan, S., Zhang, L. and Wu, X., 2018, December. Fairgan: Fairness-aware generative adversarial
networks. In 2018 IEEE International Conference on Big Data (Big Data) (pp. 570-575). IEEE.
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Data utility analys

1S

Real Heal. Fair Ours
data GAN GAN
acc. F1 acc. F1 acc. F1 acc. F1
(a) | 92.1 376 | 91.3 342 | 895 324 | 91.5 34.7
91.8 12.1 91.1 12.0 | 88.3 11.6 | 909 11.7
(b) | 71.2 599 | 694 58.3 | 67.1 56.3 | 68.1 57.3
72.6 59 67.2 59.1 664 579 | 689 576
(c) | 90.1 39.6 89.1 37 854 328 | 89.6 399
89.3 179 38.3 15.8 86.3 14.3 90 18.1
(d) | 89.9 7.0 387.9 8.5 86.1 4.3 88.4 6.8
87.6 1.4 88.4 2.1 85.9 0.8 87.3 24

Accuracy and F1 on various prediction tasks with real data as
reference point; (a) In-ICU mortality, (b) LOS > 3days,(c) In-hospital
mortality, and (d)LOS > 7days. For each tasks, the first row denotes
the predictions by LR and second row is the predictions by RF (higher

is better for all the values).
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Downstream Fairness Analysis

Metrics Prediction Real Data HealthGAN FairGAN DeMISe
In-hospital mortality | 0.043 == 0.001, | 0.082 = 0.002 0.021 £ 0.001 0.001 = 0.001
AUROC o4 In-1CU mortality 0.03 + 0.007 0.15 + 0.035 0.023 £ 0.064 | 0.012 = 0.021
- &ap LOS > 3days -0.003 +0.002 | -0.104 £+ 0.001 | -0.003 + 0.001 0.000 + 0.001
LOS>7days 0005 £ 0.002 | -0.076 % 0.002 0.061 + .001 -0.013 = 0.001
In-hospital mortality | -0.046 £ 0.018 | -0.154 £ 0.010 | -0.004 £ 0.014 | 0.000 <+ 0.001
Parity gap In-ICU mortality -0.031 £0.013 | -0.331 =0.011 | -0.005 £ 0013 | 0.000 + 0.000
LLOS>3days 0.022+0.012 0.224 + 0012 0.022 4+ 0.002 0.000 = 0.001
LOS>7days -0.004 4+ 0.002 | -0.004 +0.002 | -0.002 + 0.001 | -0.003 + 0.001

The fairness gaps between White and Black patients across the different health care tasks, and models. Positive
values represent a bias towards the white patients and negative values represent a bias towards the Black patients. The
models are fair as the metric moves towards zero. The models are more unfair as the metric moves away from zero.
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CU-ays

CU-days

Fair Resemblance Analysis

20,000 - CCU
- CSRU
- MICU
15,000 sicu
- TSICU
10,000 —@— Total
5,000

20,000

15,000

10.000

5,000

0
S The colors orange, blue and green respectively indicate under-
ICD codes
represented, over-represented and adequately represented sub-
groups
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Dividing the Indivisible to Maximize Value

We consider combinatorial assignment—the class of problems in which

indivisible elements are partitioned into bundles among alternatives to

maximize some notion of value (e.g., social welfare, expected utility).

'

Elements

Maximize value

Alternatives
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Combinatorial assignment
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The Combinatorial Assighment Problem

Input: A set of n items N, a set of m alternatives M, and a function
(called the social welfare function) ® : I — RR.

Output: A combinatorial assignment C = (B, ..., By) over N that
maximizes its social welfare $(C).

Important welfare function examples:

o Utilitarian: ®({(By,...,Bm)) = Liepm v(B;, 1).
Ex: Team formation; combinatorial auctions.
o Foalitarian: ®((By,..., By)) = min;-p v(B;, 1).
Ex: Minimize VRP makespan; “equitable” resource division.

Both are unfortunately APX-hard (hard to approximate within a
constant factor) and the input size is exponential with respect to 7.
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Assigning workers to jobs

Combinatorial auctions

sao ). (3. B
v([T @) =$500

Simultaneously for sale:

l
bid 2 —
v( [ = $700 — =

Combinatorial auctions

Multi-vehicle routing

(e.g., multiple TSP)

Core team
e 111212
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Quality assurance 2Lk 2E
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Team formation

Multi-sensor
multi-target tracking

Digit Description

Course allocation
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Fredrik Heintz, 2021-11-10 IEEE Sweden 38

Utilitarian Combinatorial Assighment - Conclusions

* Important UCA problems include coalition structure generation, the winner determination for
combinatorial auctions, and generalized assignment.

e Utilitarian combinatorial assignment is APX-hard—but under certain restrictions, the problem is solvable
and/or approximable in polynomial time.

— Synergy hypergraphs is an expressive concise representation that admits faster algorithms for many
cases (AAMAS2022).

* Inall of the experiments so far, our best optimal algorithm (a hybrid) finds optimum in (worst-case) = 1%
of the time that the previous best method (IBM’s CPLEX) needs.

— It has been used successfully in a commercial setting (EU4).

 Machine learning can be used to generate heuristics that outperform conventional heuristics & Monte
Carlo methods (AAMAS2022).
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Research Overview

Learning generative models based on trajectory data

Probabilistic logical reasoning over observed and predicted
trajectories

Utilitarian Combinatorial Assignment
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Other Components to Achieve Trustworthy Al

Humans + Al Education Ecosystems
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External Analysis of Human Decision Making

France Bans Judge Analytics, 5 Years In
Prison For Rule Breakers
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“Weak human + machine + superior process was greater than a strong computer
and, remarkably, greater than a strong human + machine with inferior process.”

Garry Kasparov
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Al and Humans — Together
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