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Deep Learning Success Stories

Explaining a joke

Prompt
Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two

different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses
for deep learning. A "pod" 1s a group of TPUs. A "pod" is also a
group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker is
pretending that the whale is able to communicate between two

groups of TPUs.
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Deep Learning Success Stories

Painting of the orange cat Otto von Garfield,
Count of Bismarck-Schonhausen, Duke of
Lauenburg, Minister-President of Prussia.
Depicted wearing a Prussian Pickelhaube
and eating his favorite meal - lasagna.

A photo of the back of a wombat wearing
a backpack and holding a walking stick.
It is next to a waterfall and is staring

at a distant mountain.

Dall-E 2, Imagen, Parti, Stable Diffusion
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s Scale All We Need?

The Bitter Lesson ® Scale can lead to abstractions

Rich Sutton, March 13, 2019 and generalization across tasks

The biggest lesson that can be read e
from 70 years of Al research is that e Still difficult to know when

general methods that leverage a model will succeed or fall.
computation are ultimately the most

effective, and by a large margin. ® How can we scale up to more

diverse application domains?

http://www.incompleteideas.net/Incldeas/
BitterLesson.html
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s Scale All We Need?

A superintelligent chess Al with 5000 ELO 1is playing a game of chess

against a human. The Al is playing as black. This is a transcript of the o Sca‘e Can ‘ead tO abStraCtiOnS
game.
and generalization across tasks

1. ed4 e5

2. Nf3 Nc6

3. Bb5 ab

4. Bxc6 dxcb

5. 0-0 Qf6

6. d3 Qgb

7. Nxe5 Qxe4

8. dxe4 Bd6

9. Bf4 Bxe5
10. Bxe5 Ne7
11. Bxc7 Nxc6

e Still difficult to know when
a model will succeed or fall.

i

® HOw can we scale up to more
diverse application domains?

https://jacobbuckman.com/
2022-06-14-an-actually-good-
argument-against-naive-ai-scaling/
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Adapting Deep Learning to New Domains
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Lessons from deep learning

1. Gradient descent scales really well

2. Model engineering scales pretty well

O
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Horizons of Al Research

Science & Engineering Autonomous Vehicles Healthcare

Deep domain knowledge Generalization to Many prediction tasks,
but limited data long tall events imbalanced data

Challenges in emerging domains

1. Incorporating (enough) domain knowledge
2. Reliable generalization across related tasks

/e o\
3. Avoiding overconfident predictions AN_AB
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What Models are Useful?

Simulation-based
Modeling

[Smedemark-Margulies et al., 2021]

Stronger assumptions

<

Planning
and Robotics

hi

Sa

7

[Biza et al., 2021]

Know
(e.g. PD

N dynamics

—S) for system

Vision &
Language

eeeeeeeeeeeeee

[Mclnerney et al., 2020]

Weaker assumptions

More knowledge
(and edge cases)

>

Some domain knowledge
(e.q. structure)
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What Models are Useful?

Simulation-based
Modeling

[Smedemark-Margulies et al., 2021]

Stronger assumptions

Know
(e.g. PD

N dynamics

—S) for system

Weaker assumptions

More knowledge
(and edge cases)

>

Some domain knowledge
(e.q. structure)
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1he Next 700
Al Domains




The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

‘““. . .today ... 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.”’—Computer Software Issues,
an American Mathematical Association Prospectus, July 1965.

Volume 9 / Number 3 / March, 1966 Communications of the ACM 157

Two Ingredients for a Language

1. Core operations / abstractions

2. Mechanisms for composition Into program
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Differentiable Programming

¢

i

‘? O PyTO rch A 4 'A‘I‘”

Tensor ““

1. Abstractions: Differentiation, Tensor Calculus, Layers

2. Composition: Networks, Objectives, Optimization




Probabllistic Programming

Stan Anglican Gen.jl Pyro Birch
https://mc-stan.org https://www.gen.dev/ https://www.birch.sh/
https://probprog.github.io/anglican/ https://pyro.ai/

1. Abstractions: Distributions, Conditioning, Inference

2. Composition: Programs as Probabilistic Models
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Programs as Moadels

Forward Simulation

N\

INPUtS model outputs
(parameters) (program) (predictions)



Programs as Moadels

Forward Simulation
n — f — (X

orior moael ikelihooo
(program)

Generative Model

p(x,n)=pn) plx|f(n))



Programs as Moadels

Forward Simulation
n — f — (X

orior moael ikelihooo
(program)

Inference (Inverse Reasoning)

- p(m) p(x|f(n))
X)= ————"=

p(n | 00



Programs as Moadels

Forward Simulation
n — f — (X

orior moael ikelihooo
(program)

Inference (Inverse Reasoning)

~ p(m) plx|f(n))
X) al—— INntractable

p(n |
p(x) integral



Programs as Moadels

0

orior

Forward Simulation
—  f — [ X

model
(program)

Ikelihooa

Inference (Inverse Reasoning)

p(n |

- p(m)plx|f(n))
X)= ———F—

p(x)

Can have
iIntractable
ikelihood
(ABC/SBI)




Programs as Models

Probabilistic Program (User Defined)

n —  f — [ x

model

(deterministic) ' <e'Inood




Programs as Moadels

Probabilistic Program (User Defined)

moage]

(stochastic) Ikelihood

Inference (Implemented by System)



Programs as Probabllistic Models

Probabilistic Program

def regression(y_vals, x_vals):
a = sample(normal (0, 10))

b = sample(normal(0, 10))

f = lambda x: a * x + b

for y, x in zip(y_vals, x_vals):

observe(normal(f(x), 0.1), vy)
return f, a, b

Probabilistic Special Forms

sample random value
observe condition on a value

Inference (MCMC)

1.0 A
0.8 -
0.6 -
0.4 -
0.2 -
0.0 -

p(y,a,b)
p(y)

Infer sample values that are in
agreement with observe values
(using Bayesian statistics)

p(a,b|y)=



Programs as Probabilistic Models (~2013)

Probabilistic Program Data

def render (chars, shape):

def char():

x = sample(uniform(0.0, 1.0))

y = sample(uniform(0.60, 1.0))

size = sample(uniform(0.5, 1.5))
weight = sample(uniform(0.8, 1.2))
return x, y, size, weight

def captcha(image):
K = sample(uniform(range(1l, 6)))
chars = [char() for k in range(K)]
captcha = render(chars, image.shape)
observe(normal(captcha, 0.1), 1mage)
return captcha, chars

[Mansinghka, Kulkarni, Perov, Tenenbaum, NeurlPS 2013]



Programs as Probabilistic Models (~2013)

Probabilistic Program Data

def render (chars, shape):

def char():

x = sample(uniform(0.0, 1.0))

y = sample(uniform(0.0, 1.0))
size = sample(uniform(0.5, 1.5))

weight = sample(uniform(0.8, 1.2))
return x, y, size, weight Inference (MCMC)

def captcha(image):
K = sample(uniform(range(1l, 6)))
chars = [char() for k in range(K)]
captcha = render(chars, image.shape)
observe(normal(captcha, 0.1), 1mage) ‘:z
return captcha, chars

[Mansinghka, Kulkarni, Perov, Tenenbaum, NeurlPS 2013]



Programs as Probabilistic Models (~2013)

Probabilistic Program Actual CAPTCHASs
a&lavy.

Pirgpgdxth

e Writing realistic simulators can be difficult

(might need source code for CAPTCHA generator)
* |nference can be prohibitively slow

(MCMC takes ~15 mins for a single image)




Deep Probabllistic Programming

Edward2 Probabilistic Torch Pyro / NumPyro
https://github.com/google/edward? https://github.com/probtorch/probtorch https://pyro.ai

1. Abstractions: Differentiable Programming,
Densities, Sampling, Variational Objectives

2. Composition: Deep Generative Models,
Amortized Importance Samplers



https://github.com/uber/pyro
https://github.com/probtorch/probtorch
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Amortized Inference

Generative Model Inference Model
(stochastic simulator) (approximate inverse)
Srior model ikalinood apProx. network data

(program) posterior  (program) distribution



Amortized Inference

Generative Model Inference Model
(stochastic simulator) (approximate inverse)
. model - apProx. network data
ProT (program) Ikelinood posterior  (program) distribution
Model Learning Amortized Inference

min D(q(x) || po(x))|  min| E [D(gy(n1x)1lpe(n]x))]




Reparameterized Variational Inference

Variational Lower Bound Importance Weight

X
max £ =max E [logw| w= M
0,¢ 0,0 MX~q de(n | x)

=min {Dy, (g4 (x) || pg(x))

0,¢
+ :‘,'q I:DKL(qCP(T) X) 11 Pe(n] X))] }

Combines model learning and amortized inference

[Kingma, Welling, ICLR 2014; Rezende, Mohamed, Wierstra, ICML 2014]



Reparameterized Variational Inference

Variational Lower Bound Importance Weight

X
max £ =max E [logw| w= M
0,¢ 0,0 MX~q de(n | x)

Main Requirement: Fully differentiable model

Vy E [logw] = E [(v,logw)"Vn(e)

+V, logw]

[Kingma, Welling, ICLR 2014; Rezende, Mohamed, Wierstra, ICML 2014]
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Minimizing the Inclusive KL divergence

ldea 1: Minimize inclusive KL (rather than exclusive KL)

—

min E [ Dy (qs(n | x)|pe(n | x))] — min E [ D (pe(n | x)[qy(n|x))]
b x~q S b x~q

ldea 2: Use importance sampling to approximate gradient

V4 Drulpe(n[x)llgg(n|x) = E )[W logqg(n | x)|
~pg (-] x
Use importance sampling /
[
W= pe(x{n) N ~qy(n]x)

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]  vachine Leaming Lab



Minimizing the Inclusive KL divergence

ldea 1: Minimize inclusive KL (rather than exclusive KL)

—

min E [ Dy (qs(n | x)|pe(n | x))] — min E [ D (pe(n | x)[qy(n|x))]
b x~q S b x~q

ldea 2: Use importance sampling to approximate gradient

—V o Dy (Po(n|x) g4 (n]x)) = , piﬁ ‘ )[V(p logq(n | x)]
Ny 9 ° x
Use importance sampling
_ pelx,n) NZZ wl’ Vo lqu¢(T) | x)
W= z 1) chp("’) | x) L
e ANLAE

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]  vachine Leaming Lab



Amortized Importance Samplers

Better gradient estimates

RN

Importance Sampling Variational Inference
Use proposals go(n | x) Learn proposals go(n | x)
to sample from pe(n | x) using samples from pe(n | x)

Better proposals

* Does not rely on ditferentiable models / reparameterization
o Often works as well as, or better than, maximizing a lower bound

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Amortized Importance Samplers

Better gradient estimates

RN

Importance Sampling Variational Inference
Use proposals go(n | x) Learn proposals go(n | x)
to sample from pe(n | x) using samples from pe(n | x)

Better proposals

Opportunity: New VI methods based on
SMC samplers, nested importance samplers, etc

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Example (~2019): Amortized Population Gibbs
Task: Unsupervised Tracking

- Corpus level (many videos)
Digit shapes
Transition dynamics

- Instances (single videos)
Object representations

- Data-points (single frames)
Object positions

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Classic Chicken-and-Egg Problem

 Easy: Infer object representations
given object positions

* Also Easy: Infer positions given
object representations

 Not Easy: Joint inference of
positions and representations

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Classic Solution: lterate

o Step 0: Initialize representations
and positions.

 Update 1: Infer object representations
given object positions

n~pn|x,z)

 Update 2: Infer object representations
given object positions
z~p(z|x,n) Problem:
Only computable in
conjugate exponential
family models

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Modern solution: Learn Updates

o Step 0: Initialize representations
and positions.

 Update 1: Infer object representations
given object positions

n~qenlx,z)

 Update 2: Infer object representations
given object positions

z qub(z ‘ Xﬂ))

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Inferred Positions Reconstructions

e Corr

etely unsupervised
e Com |

utationally efficient (~5 updates, ~10 particles)

P
P

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]
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Reasoning Compositionally About Inference

What (inference) DSL could define this sampler / variational method?

Algorithm 1 Amortized Population Gibbs Sampling

I: forninl,..., N do
2: G¢ =

431 §0171§DfiA(x,)Ld0 * ADG IS an examp‘e Of a

. 2N~ ge(z ] 2T - amortized SMC sampler

6 W po(a™, 2™ / gz

A  Known building blocks, but

9: forbinl,..., B do T '

o B RoSAMPLE(Z, B) not trivial to combine correctly
11: for/in1,..., L do . o

12: Alal ) * Can we define compositional
N O G T G e ) methods for importance sampling
5 Go= Go+ XoEy 55 logay (3 n, 2L, and gradient estimation?

16: 2R Wk = 2 %

17: return Gy, 2, w > Output: Grac




Combinators: A DSL for Inference

O”O Q O O

«VO O OOO OOO

09 Q O O

Move Resample Propose

f ::= A primitive program

p:.:=1f | extend(p, )

q::=p | resample(q) | compose(q’, q) \ propose(p, Q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

O O
O o ©° O o0 ©O
O O

Propose

propose(p, Q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

Resample

resample(q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

ol =
~O O

OF O

Move

extend(p, f)

compose(q’, q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

ol =
~O O

OF O

Move

extend(p, f)

compose(q’, q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Core Property: Proper Weighting

Definition: A pair w, z is properly weighted with respect
to a density 1(z) when, for all measurable h(z),

]EW,ZNHI:W h(Z) %EZNQ h(Z)

/
Sampler Quantlty of interest
(can be a black box) (return value of program)

Constant of proportionality Densr[y of interest
(marginal likelihood) (program posterior)

[Naesseth, Lindsten, Schon, Foundations and Trends in Machine Learning, 2019]



Combinators: A DSL for Inference

d»o Q O O

«VO O OOO OOO

09 Q O O

Move Resample Propose

Semantics: Composition preserves proper weighting

https://github.com/probtorch/combinators
(Pyro implementation forthcoming)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]


https://github.com/probtorch/combinators

Example: Amortized Giblbs Samplers

def pop_gibbs(target, proposal, kernels, sweeps):

g = propose(partial(target, suffix=0),
partial (proposal, suffix=0))
for s 1n range(sweeps):
for k 1in kernels:
g = propose(

extend(partial (target, suffix=s+1),

partial (k, suffix=s)),
compose (partial (k, suffix=s+1),
resample(q, dim=0)))
return (g

High-level algorithm description
(transition operators, resampling)

Algorithm 1 Amortized Population Gibbs Sampling
I: forninl,..., N do
2: G¢ =0

a:.n ~ pDATA (IIJ)

for/inl,..., L do
n,1,l

z

o ey B e IS

forkin2,..., K do

2’ W = Zn,lc—l) ,wn,k—l
9: forbinl, ..., B do
10: Z,%W = RESAMPLE(Z, W)
11: for/inl,..., L do
: 511 51
12: Zt o~ (- | 2™, 20 ,)
) ~l pe(mnvgél’gl—b) q¢(2é|mnvgl—b) ~1
13: YT pe@m 7, 45 a2 ,)
. =l ozl
14: 2y = 2
15: Go=Gs+ L B dlogg,(3|am, 3,)
: o = ¢ =13, oV dg 2896\ »Z_b
16: 2Rtk = Z @

17: return Gy, 2, w > Output: Grac

Low-level algorithm description
(weight and gradient computations)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UA/, 2021]



Ditferentiable + Probabilistic + Inference Programming

Deep Generative Model Inference Model
program pe(X, z) program qe(z | X)

Better gradient estimates

RN

Importance Sampling Variational Inference
Jse proposals go(z | x) Learn proposals ge(z | X)
to sample from pe(z | x) using samples from pe(z | x)

Better proposals
User-specified User-specified
Importance sampler variational objectives

(inference combinators) (nested variational inference)



IThe Next 700 Moaels in Al

Biophysics Neuroimaging Epidemiology  Astrophysics Computational Molecular Manufacturing
Fluid Dynamics Design
EEEEEEREEE P
3'-Alexas55 = 9uide DNA , 0 P - = ?
target DNA 3'-(Alexab47),; = ® (:‘.) o
5'-biotin binding site ;@ v
streptavidin & \ L4 Q:

Abstractions for Emerging Problems:
® | earning surrogate models
® \odeling search spaces

® |nferring differential equations A@AB
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