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Promises and Hype
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Quantum Algorithms and Today's Technology

@ The traditional design of quantum algorithms assumes large and

reliable quantum computers.

Fault-tolerant

# qubits millions

errors corrected

use Shor, Grover, HHL...
research computational complexity
available in 5-30 years?

Osvaldo Simeone

Near-term
10-1000
mitigated

variational circuits

run it and see

now

[M. Schuld ‘21]
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Quantum Algorithms and Today's Technology

@ The traditional design of quantum algorithms assumes large and

reliable quantum computers.

@ Quantum machine learning is emerging as a programming paradigm
suited for current noisy intermediate-scale quantum (NISQ)

computers.

# qubits
errors
use
research

available

1

Fault-tolerant
millions

corrected

Shor, Grover, HHL...
computational complexity

in 5-30 years?

Near-term
10-1000

mitigated
variational circuits
run it and see

now

[M. Schuld ‘21]

1M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.
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Quantum Circuit

@ A quantum algorithm is specified by a quantum circuit operating on
a set of n qubits.

@ A quantum circuit consists of a sequence of quantum gates that
are applied sequentially and in place to the n qubits...

Armay of qubits

Hidary ‘19
Osvaldo Simeone QML 7 /56



Quantum Circuit

o ... followed by measurements that convert the state of the n qubits
into n classical bits.

Armay of qubits

—— . Circuit depth

[Hidary ‘19]
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Quantum Circuit

@ The state of n qubits is described by a 2"-dimensional complex

(amplitude) vector.

Array of qubits

n qubits <
AR

Osvaldo Simeone

0.1336 — i0.0214
0.1344 + i0.1060
0.0637 — i0.1033
—0.1145 +40.0031
0.0680 + 40.0524
0.1546 +40.1044
0.0464 +40.1465
0.0981 +40.0082
0.0689 —40.1415
—0.0288 —i0.0704
0.0279 —40.1007
—0.0747 +i0.2229
0.0843 —i0.0584
—0.1088 +40.0710
—0.1014 —40.0183
—0.0768 +i0.0843
—0.2793 —i0.0725
0.1364 —40.1330
0.0308 —40.1349

Circuit depth

QML

L_n random
bits

[Hidary 19]
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Quantum Circuit

@ The state of n qubits is described by a 2"-dimensional complex
(amplitude) vector.

@ Quantum measurements are inherently random: “collapse” of the
waveform.

0.1336 — 0.0214
pa— 0.1344 + 0.1060
0.0637 — i0.1033 —
—0.1145 4 i0.0031
0.0680 + i0.0524
0.1546 + i0.1044
0.0464 + i0.1465
0.0981 + 40.0082 L_n random
0.0689 — i0.1415 .
2" | Z0.0288 — 10,0704 bits
0.0279 — i0.1007
—0.0747 + 0.2229
0.0843 — i0.0584
—0.1088 4 i0.0710

e —0.1014 — i0.0183
—0.0768 + i0.0843
—0.2793 — i0.0725 N

0.1364 — 40.1330 e St depth
0.0308 — i0.1349

n qubits <

[Hidary 19]
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Quantum Circuit

@ State vectors are represented using Dirac’s ket notation [¢).

Array of qubits

n qubits <

Osvaldo Simeone

2~
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0.1344 + i0.1060
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0.0680 + 0.0524
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0.0464 + 40.1465
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Parameterized Quantum Circuit

e A parameterized quantum circuit (PQC) is defined by a fixed
sequence of quantum gates whose operation depends on a vector of
classical parameters 6.

o PQCs are also known as quantum neural networks.

Circuit depth
[Hidary ‘19]

Osvaldo Simeone QML 11 / 56



Classical Machine Learning

o Classical machine learning relies on parameterized functions 7(x|6),
e.g., neural networks.

@ The parameters 6 are optimized by comparing the model output with
classical data.

classical
optimizer

Osvaldo Simeone QML 12 / 56



Quantum Machine Learning

e In quantum machine learning, the parameters of the PQC U(#) are
designed using classical optimization based on measurements of the
output of the PQC and (possibly) data.

U(#h) A cptmier

average

Osvaldo Simeone QML 13 / 56



Quantum Machine Learning

e In quantum machine learning, the parameters of the PQC U(#) are
designed using classical optimization based on measurements of the
output of the PQC and (possibly) data.

@ By keeping the quantum computer in the loop, the classical optimizer
can account for the non-idealities and limitations of quantum
operations.

U(#h) A cptmier

average

Osvaldo Simeone QML 13 / 56



Quantum Machine Learning: Functionalities

Drug design, predict properties
of new materials with ML,
speed up simulations, ...

Quantum }(

simulation

Error mitigation, design quantum
codes, compile quantum
circuits, ...

Enhanced @

quantum computing

e

QML Q

Quantum .
machine perception

Quantum sensing, learn about
exotic quantum systems
and dynamics, ...

Osvaldo Simeone

Classical mT1

data analysis

Speed up optimization in
supervised and unsupervised
ML tasks, ...

[Cerezo et al 22]
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Quantum Machine Learning: Applications?

Quantum artificial vision for defect detection in manufacturing

Danicl Guij,! Victor Onofre! Ginnni Del Bimbo,! Sl Mol Dol Estepe
Xabier De Carlos,* Aua Adell Aizea Lojo* Josu Bilbuo,* aud Romin Oris' 5

McKinsey
& Company

Pharma’s digital Rx: Quantum computing

earch and development

MACHINE LEARNING

PHARMACEUTICALS
CHEMISTRY

* W%RLD Vonture.
TODAY

Bosch's new partnership aims to

Quantum System Improves CaixaBank Investment e>‘P|°fe qua"‘“m digital twins

Algorithms |
’ v -

https://quantumcomputingreport.com/
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Quantum Machine Learning:

A Taxonomy




Quantum Machine Learning

@ Generalizing classical machine learning, in quantum machine learning
data and/or processing are quantum.

Data type

Classical Quantum

®
o £
o O [0)
© 0 0 ﬁ\
o o
& OO

D Ainind
SR

L

d

Classical

Algorithm type

Quantum
x

1%):

- O = O

[Cerezo et al 22]
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Quantum Machine Learning: CQ

@ Currently, the most common quantum machine learning case is “CQ":
data are classical, while processing is quantum.

10) |9(, 0)) :
—+— U(:U, 9) / /7( classical

optimizer

average

S —
1 classical data '
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Quantum Machine Learning: CQ

@ Currently, the most common quantum machine learning case is “CQ":
data are classical, while processing is quantum.

@ The measurement outputs are compared to classical data to optimize
parameters 6.

) 9z, ) i
U (. ) —— 77 optmiver

average

S —
1 classical data '
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Quantum Machine Learning: CQ

@ Currently, the most common quantum machine learning case is “CQ":
data are classical, while processing is quantum.

@ The measurement outputs are compared to classical data to optimize
parameters 6.

@ Can implement (more efficiently?) classical machine learning tasks.

10) |9(, 0)) :
—+— U(:B, 9) / /7( classical

optimizer

average

S —
1 classical data '
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Quantum Machine Learning: QQ

@ In the “"QQ" case, the quantum state produced by the PQC is
compared with quantum data to optimize 6.

—+— U(e) || quantum | | /7{ | | classical

loss optimizer

F average

quantum data

Osvaldo Simeone [e] V1N 19 / 56



Quantum Machine Learning: QQ

@ Quantum autoencoders for compression

a)

J. Romero, et al, “Quantum autoencoders for efficient compression of quantum data,” Quantum Science and Technology,
2017.

Osvaldo Simeone
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Quantum Machine Learning: QQ

e Quantum generative adversarial networks>

outD [0)  — (Z)out D

BathD  [0)®*

N

D(6p)
Label D |1)

R/G
Pa/

OutR|G |0)®" —

Label R|G |A) — or

(8
BathR|G |z) b (6e)

3P. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, 2018.

Osvaldo Simeone QML 21 /56



Quantum Machine Learning: QC

@ In the "QC" case, there is no PQC, and the outputs of measurements
of a quantum state are processed by a classical machine learning
model.

e Example: quantum tomography?.

classical
optimizer

H R

average

quantum data

4V. Gebhart, “Learning quantum systems,” arXiv:2207.00298 , 2022.
Osvaldo Simeone QML 22 /56
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Parameterized Quantum Circuits




Quantum Circuit

@ Quantum gates implement multiplications by unitary matrices
(reversible norm-preserving linear transformations).

[Hidary ‘19]
Osvaldo Simeone [e] V1N 24 / 56



Quantum Circuit

@ Quantum gates implement multiplications by unitary matrices
(reversible norm-preserving linear transformations).
@ Measurements convert quantum information into n classical, random,
bits by following Born’s rule:
» Given the 2" x 1 state vector ) = [a,] with x € {0,1}"

Pr[bit string x]=p(x) = |ax|?

[Hidary ‘19]
Osvaldo Simeone [e]VIN 24 / 56



Quantum Circuit

@ Measurement outputs may be averaged to mitigate shot noise:

» x — real number o, = realization of an observable
» (O) = expected values of the observable

[Hidary ‘19]

Osvaldo Simeone [e] V1N 25 / 56



Parameterized Quantum Circuit

o A PQC is defined by a fixed sequence of quantum gates that can
depend on a vector of classical parameters 6:

» Parameterized unitary matrix U(0)

[Hidary 19]

Osvaldo Simeone QML 26 / 56



Ansatz

@ The choice of the architecture of the PQC is akin to the choice of the
model class in classical machine learning (e.g., neural network
architecture).

@ In quantum machine learning, we refer to the architecture of the PQC
U(0) as the ansatz (from the German term for “approach” or
“attempt”).

Osvaldo Simeone QML 27 / 56



Ansatz

@ The choice of the architecture of the PQC is akin to the choice of the
model class in classical machine learning (e.g., neural network
architecture).

@ In quantum machine learning, we refer to the architecture of the PQC
U(0) as the ansatz (from the German term for “approach” or
“attempt”).

@ As for the model class in machine learning, one should choose the
ansatz, if possible, based on domain knowledge (e.g., in quantum
chemistry).

Osvaldo Simeone QML 27 / 56



Mean-Field Ansatz

@ The mean-field ansatz applies separate parameterized rotations on the
qubits.

—1 R(05,03,03) —

— R(01.63.6%) |—

— R(03.63.63) |—

— R(03,03,03) —

Osvaldo Simeone [e] V1N 28 / 56



Hardware-Efficient Ansatz

@ The hardware-efficient ansatz applies layers of separate rotations and fixed
multi-qubit, entangling, gates.

Ur(0) = Ui(0) -+ = UL(0)
| R(‘9I1,079/2,07020) | —

: U ent

] R(ell,n—l’ elz,n—b ezn—l) ] _

Osvaldo Simeone QML 29 / 56



Hardware-Efficient Ansatz

@ The multi-qubit entangling gate U consists of a fixed cascade of
two-qubit gates.

I :
1 L 4
& @
linear entangling gate full entangling gate
(based on CZ) (based on CZ)

Osvaldo Simeone QML 30 / 56



Ansatzes with Increasing/ Decreasing Number of Qubits

lv)

CNOT gate

Osvaldo Simeone

No. of qubits: constant

— |o)®™

o {

(1111

LT

M1l

5ad {

I

No. of qubits: increases

c

lv)

—e

e

[ HA

—e

No. of qubits: decreases
[Cerezo et al 22]

QML
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Unsupervised Learning

via Born Machines




Unsupervised Generative Learning

@ The measurement of the output of a PQC on n qubits produces a

random n-bit string x ~ p(x|6) by Born's rule.

@ Born machine: Generative model for binary strings x implemented

via a PQC®

10) |1(6))

—U(0) —

/7<

x ~ p(z|0)

B. Coyle B, et al, “The Born supremacy: Quantum advantage and training of an Ising Born machine,” Quantum

Information, 2020.

Osvaldo Simeone

QML
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Unsupervised Generative Learning

— '=I il
X=77.4%
=l =N |

ImInAl™

N =20000

X =90.0% --. ‘-
|

. ImEAEE

X=95.7% I
I .

FIG. 4. 3 x 3 BARS-AND-STRIPES samples generated from
the QCBMs. The circuit parameters used here are from the final
stages of Adam training with different batch sizes N in Fig. 3(a).
X is the rate of generating valid samples in the training dataset. For

illustrative purposes, we only show 12 samples for each situation
with batch size N. [Liu and Wang '18]

Osvaldo Simeone QML 34 /56



Quantum Circuits as Samplers

@ Current claims of quantum supremacy/ advantage rest on the
capacity of quantum circuits to generate samples from joint discrete
distributions in a more efficient manner than classical devices®.

Article

Quantum supremacy using a programmable

superconducting processor

a Classically verlfiable

b Supremacy regime

3

2} _m =14 cycles

1"~ —Prediction from gato and measuroment errors '
1 OFull cireuit X Elided circuit +Patch circuit 1

%%%@

Cross-entropy benchmarking fidelity, Figp

EYIY3Y

n =53 qubits
{'— Prediction
1 XK eided (50 oror bare)

1 paten

Nomborof quhm n

6 . . . P
X. Gao et al, “Enhancing generative models via quantum correlations,

Osvaldo Simeone

12 T4 16 18 20

Number of cycles, m [Arute et al 19]
arXiv 2021.
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Training Born Machines
@ Training is based on comparing samples x ~ p(x|@) with training
data.

@ This is done by minimizing a measure of divergence between data
distribution and p(x|0).

@ This is expressed in the form of the expected value of a cost
observable.

(1) mitialize cireuit with random parameters @ = (6", -+, 0%)

I0)

@ Measurements

0)
I (4) Update 6. Repea
(3) Estimate mismatch between data and quantum outcomes
T — [ ——
ol B EE EEE o
Z, Z
Zoss -— o
o |
illil, . LL
o SR
o e oo e

i
[Tian etal '22]
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Gradient Descent

@ Optimization is often carried out via gradient descent.
@ Unlike classical machine learning models, backprop is not applicable,
since we do not have access to internal workings of the PQC.

U0+ Zeq) A L(0+ Zeq)

average (N shots)

estimate of
HL()
004

U (60— Zeq) R L(0-Zeq)

average (N shots)

repeat for d=1,...,D
Osvaldo Simeone QML 37 / 56




Gradient Descent
@ Optimization is often carried out via gradient descent.
@ Unlike classical machine learning models, backprop is not applicable,
since we do not have access to internal workings of the PQC.
@ The gradient is instead estimated via a perturbation-based method
known as parameter shift rule.

U0+ Zeq) A L(0+ Zeq)

average (N shots)

estimate of
HL()
004

U (60— Zeq) R L(0-Zeq)

average (N shots)

repeat for d=1,...,D
Osvaldo Simeone QML 37 /56




Barren Plateaus
@ Implementing gradient descent is practically made complicated by the
fact that the loss landscape with generic, unstructured, ansatzes is
not well behaved as the number of qubits increases.”

1.0 . 5 . More parameters increase the noise-free
Noise-Free Simulation accuracy but degrade measured
0.81 Measured on IBMQ-Yc_JrIqu\_(r_\V_J _ac%;,r_q@y, ,,,,, o
5 Large gapidue to
8061 ge gap;
< gate errors
o] &
t 041 i
z \4
=
0.2
Accuracy varies greatly under the same #parameters but different
0.0 circuits, motivating us to systematically search for the best circuit.
’ 12 36 45 90 145 180

Number of Parameters
[Wang et al 22]

7 . - " L.
J. McClean, et al, “Barren plateaus in quantum neural network training landscapes,” Nature communications, 2018.

Osvaldo Simeone QML 38 /56



Supervised Learning:

Probabilistic vs. Deterministic Models




Supervised Learning

e Input x is typically encoded in the operation of the PQC U(x,#) in a
manner similar to the model parameters 6 (angle encoding).

@ (There are other ways to embed classical information into a quantum
state.)

0) (2, 0))
—— U(CB, 9) 7 ‘ -/- .

|

Osvaldo Simeone QML 40 / 56




Supervised Learning: Probabilistic Models

e For classification, the target variable is a binary string y € {0,1}",
with m < n.

@ Probabilistic models obtain a randomized decision y through a
measurement of the qubits.

|0) |4 (z, 0)) y ~ p(ylz,6)
—— U(QZ‘, 9) # ’ 7 :

|

Osvaldo Simeone QML 41 / 56



Supervised Learning: Deterministic Models

e Deterministic models implement a parameteric function hy(x|6) of
the input x, which may be used for regression or classification.

e Function hy(x|0) is evaluated by estimating expectations of one or
more observables.

haa (x]6) =

(M) (x0))

10) ¥ (, 0)) <
# U(ﬂ?, 0) #

Iy average

xr

Osvaldo Simeone QML 42 / 56



Supervised Learning: Deterministic Models

e Deterministic models implement a parameteric function hy(x|6) of
the input x, which may be used for regression or classification.

e Function hy(x|0) is evaluated by estimating expectations of one or
more observables.

@ Unlike probabilistic modes, shot noise averaging is required also for
inference (and not only for learning).

ho(z]0) =
(M) (x0))

10)

¥ (=, 6)) <
7 U(m, 9) #

Iy average

xr

Osvaldo Simeone QML 42 / 56



Supervised Learning: Deterministic Models

@ Deterministic quantum models are akin to classical kernel methods
in that they operate over a large feature space — the Hilbert space of
dimension 2" — via linear operations.®

KERNEL METHODS QUANTUM COMPUTING

T~
‘/ feature space ‘\

#2) A

quantum
Hilbert space

(=) Q ‘

measurements

data space X'

8M. Schuld, “Supervised quantum machine learning models are kernel methods,” arXiv, 2021.

Osvaldo Simeone [e] V1N 43 / 56



Research Directions




Challenges

o Architecture:
» What are the “right” building blocks for quantum machine learning
models?
» How to scale up classical input and/or output data?
» How to integrate classical and quantum machine learning models?

Osvaldo Simeone [e] V1N 45 / 56



Challenges

o Architecture:
» What are the “right” building blocks for quantum machine learning
models?
» How to scale up classical input and/or output data?
» How to integrate classical and quantum machine learning models?

o Optimization:
» How to improve the performance of gradient descent in the presence of
barren plateaus?
» How to account for “quantum noise”?
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Challenges

@ Architecture:

» What are the “right” building blocks for quantum machine learning
models?

» How to scale up classical input and/or output data?

» How to integrate classical and quantum machine learning models?

o Optimization:
» How to improve the performance of gradient descent in the presence of
barren plateaus?
» How to account for “quantum noise”?
o Theory:

» What are the data requirements for quantum machine learning,
particularly for generative modeling?

Osvaldo Simeone QML 45 / 56



Hybrid Classical-Quantum Models
@ C-QC = classical data - quantum-classical processing
@ Possible two-way interaction between classical and quantum models
@ Data generally processed and output by both models

guantum model

classical
—
outputs

classical
data

classical model

Osvaldo Simeone QML 46 / 56



Binary Neural Networks

e Binary neural network: +1 weights®

o We model the distribution g(6) implicitly via a Born machine!®

9W. Tang, et al, “How to train a compact binary neural network with high accuracy?,” AAAI, 2017.

I. Nikoloska and O. Simeone, “Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks with Born
Machines,” |IEEE MLSP, 2022.

Osvaldo Simeone [e] V1N 47 / 56



Training on Noisy Quantum Computers
o Gradients are to be estimated using an actual NISQ computer.
@ Quantum noise causes the estimate of the gradient to be biased.

Atiterationt +1,ford =1,..., D
E(08 + eal .
(0" +ea) (i)

~oht T ~0, (H) e (0 cag)

70 D
Uy |eeeled] o] Uy

X N,,, measurements C at
F— (9t ge
—_—

1 Bias
7l S [t N 77 A (H) pe (0 —ca)
’ a
X N,,, measurements
QML 48 / 56
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Quantum Error Mitigation

@ Quantum error correction to fully compensate for quantum noise

requires increasing the number of qubits beyond the current reach of
quantum technology.

implementable operations  quasi-probabilities probabilities

(4 1) = lga.1]
b le [— pd( )— Za
I | pa(2) = 1222
el = [ Hor= @.®_
ideal gate N *
e qd,No . I |
— ok = - pa(Np) = L2lo
R g\ VO — Zd = Zi IQ(L‘1| ( ) 1Z4]

Quasi-probabilistic decomposition of ideal gate
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Quantum Error Mitigation

@ Quantum error correction to fully compensate for quantum noise
requires increasing the number of qubits beyond the current reach of
quantum technology.

e Quantum error mitigation trades space (qubits) with time, running
multiple noisy circuits to emulate a noiseless one.!!

implementable operations  quasi-probabilities probabilities

EN e
S ey N pa(2) = 2!
—unl =|Hoe |41 ®)-
ideal gate N *
d 4d,No . I |
— o = - pa(Np) = Ytrol
Nop— Zd = Z! |qd.‘1| ( ) 1Z]

Quasi-probabilistic decomposition of ideal gate

11

K. Temme, et al, “Error mitigation for short- depth quantum circuits”, Physical review letters, 2017.
Osvaldo Simeone QML 49 / 56



Training with Quantum Error Mitigation

@ Quantum error mitigation removes the bias, but increases the

Atiterationt + 1:

circuit 1

variance.

ford=1,..,

circuit, N

et

IQII@ ford=1,....0

Osvaldo Simeone

%Ny /N, measurements|

%Ny /N, measurements

@;rﬁzsxn(un 1)

sen(gar) . -sgnlan.2)

Pldgen)

[9rnla

s 2
Isgn(qa.No ) - - - s80(qp,2)

QML

with QEM, large N

-------- with QEM, small N¢
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Training with Quantum Error Mitigation

@ Number of iterations required to ensure an error floor § for a fixed
number of measurements N, per iteration (with respect to the
solution for the noiseless circuit):'?

Schemes Iteration Complexity
shot-noise only o (1og 1y %)
shot and gate noise o (log == + Z—i)
shot and gate noise with QEM (5(log 3+ VZEM)
Parameters Scaling
variance V' O(D/Ny,)
bias B O(D~)
variance V¢ O(Dc(y)/Nu)
variance VOEM [ O(c; (y)D/N,,) + O(ca(v)D/N.)

125. T. Jose and O. Simeone, “Error Mitigation-Aided Optimization of Parameterized Quantum Circuits,” in preparation.
Osvaldo Simeone QML 51 /56



Conclusions




Conclusions

@ Quantum machine learning is an emerging paradigm suited for NISQ

computers.

@ Classical-quantum machine learning may be of more immediate
relevance for engineering applications, particularly when implemented
using hybrid quantum-classical models...

Fault-tolerant

# qubits millions

errors corrected

use Shor, Grover, HHL...
research computational complexity
available in 5-30 years?

Osvaldo Simeone

Near-term
10-1000

mitigated
variational circuits
run it and see

now

QML

53 / 56

[M. Schuld ‘21]



Conclusions

@ ...although one should be aware of the differences between tasks
suitable for classical and quantum machine learning.

Property Problems studied in quantum computing Problems solved by machine learning
classical low - problems are carefully selected to be prov- high — machine learning is applied on an indus-
performance ably difficult for classical computers trial scale and many algorithms run in linear time

size of inputs

problem
structure

theoretical
accessibility
evaluating
performance

small — near-term algorithms are limited by small
qubit numbers, while fault-tolerant algorithms
usually take short bit strings

very structured — often exhibiting a periodic
structure that can be exploited by interference

high — there is a large bias towards problems
about which we can theoretically reason

computational complexity — the dominant
measure to assess the performance of an algorithm
is asymptotic runtime scaling

in practice

very large — may be millions of tensors with mil-
lions of entries each

“messy” — problems are derived from the human
or “real-world” domain and naturally complex to
state and analyse

shifting — theory is currently been re-built
around the empirical success of deep learning

practical benchmarks — machine learning re-
search puts a strong emphasis on empirical com-
parisons between methods
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Conclusions

@ In the long run, quantum-quantum machine learning applications
to science and engineering may prove more impactful.
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For More...

@ O. Simeone, An Introduction to Quantum Machine Learning for
Engineers, Foundations and Trends in Signal Processing, 2022,
https://arxiv.org/abs/2205.09510
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