Quantum Machine Learning: An Introduction

Osvaldo Simeone

King's College London

ELLIIT Workshop, 19/10/2022

This Talk

- Context
- Quantum machine learning: a taxonomy
- Unsupervised learning via Born machines
- Supervised learning: probabilistic vs. deterministic models
- Research directions
- Conclusions

Context

Promises and Hype

The Tell

Quantum computing will be the smartphone of the 2020s, says Bank of America strategist

Published: Dec. 12, 2019 at 2:40 p.m. ET

By Chris Matthews

Exponentially more computing power may revolutionize health care and cybersecurity

► CLASSIQ OAD PARTON NORT THEAT OF HIGHTS THEAT OF HIGHTS CLASSIQ RESEARCH REVEALS THAT QUANTUM COMPUTING IS THE FUITURE – AND IT'S

COMING SOON

FAST@MPANY

-21 | FAST COMPANY INNOVATION FESTIVAL

IBM CEO: Quantum computing will take off 'like a rocket ship' this decade

But Arvind Krishna says that some hard quantum physics problems await as the market pushes for larger and larger quantum systems.

Quantum Computing Paranoia Creates a New Industry

Even though quantum computers don't exist yet, security companies are preparing to protect against them.

by Tom Simonite January 30, 2017

Players

	atoms		electron superconducting loops & controlled spin				photons	
	Laser Dectron			Capacitors Capacitors Microwaves	Mcrowaws	Vacancy - Vector		14 19 1 -
	trapped	cold	quantum	super-	silicon	NV centers	topological	photons
				Google amazon	QUANTUM MOTION	TURING	Microsoft	
ndors		ATOAA		(intel) IBM			NOKIA	
	() AQT		NEC	OQC qci	Comparing ONTT			
3	IONICS	IQuEra>		ALICE & BOB Nord	equall.labs			
	eleQtron	COMPUTING INC.		de bleximo FUJITSU	,\RCHER			
	XIQ st 🛞			cea CNTS	cea CNTS	cea CNIS	cea CNTS	CITS E University of BRISTOL
labs (*)			l'li T skit	Mit Caria	BRISTOL	I'liiT 🔬	UCSB	OXFORD
		JÜLICH	MCOST	QuTech	woxford	fu Delft	4 D-I4 Qullech	😵 SAPIENZA 🛞
	Sanda Innsbruck	PennState	ETH zürich	ETH zürich 🛱 🎫	ETH zürich	HARVARD	Nels Bohr Institutet	() universität
		EPFL O THE OBED STATE UNIVERSITY	(*) non exhaustive inventory, missing Chinese Jaba among others	Berkeley Yale		THE UNIVERSITY OF CHICAGO	SYDNEY	😚 東京大学
	- ar scene		in the second se	☆ 米 米 入 子 milenumerbus	• • NILLA			[O Ezratty '22]

Quantum Algorithms and Today's Technology

- The traditional design of quantum algorithms assumes **large and** reliable quantum computers.
- Quantum machine learning is emerging as a programming paradigm suited for current noisy intermediate-scale quantum (NISQ) computers.¹

	Fault-tolerant	Ovantum Computation and Quantum Enformation	Near-term	
# qubits	millions	THE CONTRACT OF	10-1000	STUTTER
errors	corrected		corrected mitigated	
use	Shor, Grover, HHL		variational circuits	∇
research	computational complexity		run it and see	
available	in 5-30 years?		now	
				[M. Schuld '

¹M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.

Quantum Algorithms and Today's Technology

- The traditional design of quantum algorithms assumes **large and** reliable quantum computers.
- Quantum machine learning is emerging as a programming paradigm suited for current **noisy intermediate-scale quantum (NISQ)** computers.¹

	Fault-tolerant	Ovantum Computation and Quantum Enformation	Near-term	
# qubits	millions	HA O	10-1000	STREET T
errors	corrected		mitigated	
use	Shor, Grover, HHL		variational circuits	
research	computational complexity		run it and see	
available	in 5-30 years?		now	
				[M. Schuld '2

¹M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.

- A **quantum algorithm** is specified by a quantum circuit operating on a set of *n* qubits.
- A quantum circuit consists of a sequence of quantum gates that are applied sequentially and in place to the *n* qubits...

Osvaldo Simeone

[Hidary '19]

• ... followed by **measurements** that convert the state of the *n* qubits into *n* classical bits.

[Hidary '19]

- The state of *n* qubits is described by a 2^{*n*}-dimensional complex (amplitude) vector.
- Quantum measurements are inherently **random**: **"collapse"** of the waveform.

- The state of *n* qubits is described by a 2^{*n*}-dimensional complex (amplitude) vector.
- Quantum measurements are inherently **random**: **"collapse"** of the waveform.

• State vectors are represented using **Dirac's ket notation** $|\psi\rangle$.

Parameterized Quantum Circuit

- A parameterized quantum circuit (PQC) is defined by a fixed sequence of quantum gates whose operation depends on a vector of classical parameters *θ*.
- PQCs are also known as quantum neural networks.

Classical Machine Learning

- Classical machine learning relies on parameterized functions $f(x|\theta)$, e.g., neural networks.
- The parameters $\boldsymbol{\theta}$ are optimized by comparing the model output with classical data.

Quantum Machine Learning

- In quantum machine learning, the parameters of the PQC $U(\theta)$ are designed using classical optimization based on measurements of the output of the PQC and (possibly) data.
- By keeping the quantum computer in the loop, the classical optimizer can account for the non-idealities and limitations of quantum operations.

Quantum Machine Learning

- In quantum machine learning, the parameters of the PQC $U(\theta)$ are designed using classical optimization based on measurements of the output of the PQC and (possibly) data.
- By keeping the quantum computer in the loop, the classical optimizer can account for the **non-idealities and limitations** of quantum operations.

Quantum Machine Learning: Functionalities

Quantum Machine Learning: Applications?

https://quantumcomputingreport.com/

Quantum Machine Learning: A Taxonomy

Quantum Machine Learning

• Generalizing classical machine learning, in quantum machine learning data and/or processing are quantum.

Quantum Machine Learning: CQ

- Currently, the most common quantum machine learning case is "CQ": data are classical, while processing is quantum.
- The measurement outputs are compared to classical data to optimize parameters *θ*.
- Can implement (more efficiently?) classical machine learning tasks.

Quantum Machine Learning: CQ

- Currently, the most common quantum machine learning case is "CQ": data are classical, while processing is quantum.
- The measurement outputs are compared to classical data to optimize parameters θ.
- Can implement (more efficiently?) classical machine learning tasks.

Quantum Machine Learning: CQ

- Currently, the most common quantum machine learning case is "CQ": data are classical, while processing is quantum.
- The measurement outputs are compared to classical data to optimize parameters θ.
- Can implement (more efficiently?) classical machine learning tasks.

Quantum Machine Learning: QQ

 In the "QQ" case, the quantum state produced by the PQC is compared with quantum data to optimize θ.

Quantum Machine Learning: QQ

• Quantum autoencoders for compression²

 $^{^2}$ J. Romero, et al, "Quantum autoencoders for efficient compression of quantum data," Quantum Science and Technology, 2017.

Quantum Machine Learning: QQ

• Quantum generative adversarial networks³

³P. Dallaire-Demers and N. Killoran, "Quantum generative adversarial networks," Physical Review A, 2018.

Quantum Machine Learning: QC

- In the "QC" case, there is no PQC, and the outputs of measurements of a quantum state are processed by a classical machine learning model.
- Example: quantum tomography⁴.

⁴V. Gebhart, "Learning quantum systems," arXiv:2207.00298 , 2022.

Parameterized Quantum Circuits

- Quantum gates implement multiplications by **unitary matrices** (reversible norm-preserving linear transformations).
- Measurements convert quantum information into *n* classical, random, bits by following **Born's rule**:
 - Given the $2^n \times 1$ state vector $|\psi\rangle = [\alpha_x]$ with $x \in \{0,1\}^n$

 $\Pr[\mathsf{bit string } x] {=} p(x) = |lpha_x|^2$

- Quantum gates implement multiplications by **unitary matrices** (reversible norm-preserving linear transformations).
- Measurements convert quantum information into *n* classical, random, bits by following **Born's rule**:
 - Given the $2^n \times 1$ state vector $|\psi\rangle = [\alpha_x]$ with $x \in \{0,1\}^n$

 $\Pr[\text{bit string } x] = p(x) = |\alpha_x|^2$

- Measurement outputs may be averaged to mitigate shot noise:
 - $x \rightarrow$ real number o_x = realization of an **observable**
 - $\langle O \rangle$ = expected values of the observable

[Hidary '19]

Parameterized Quantum Circuit

- A PQC is defined by a fixed sequence of quantum gates that can depend on a vector of classical parameters *θ*:
 - Parameterized **unitary** matrix $U(\theta)$

Ansatz

- The choice of the architecture of the PQC is akin to the choice of the **model class** in classical machine learning (e.g., neural network architecture).
- In quantum machine learning, we refer to the architecture of the PQC $U(\theta)$ as the **ansatz** (from the German term for "approach" or "attempt").
- As for the model class in machine learning, one should choose the ansatz, if possible, based on domain knowledge (e.g., in quantum chemistry).

Ansatz

- The choice of the architecture of the PQC is akin to the choice of the **model class** in classical machine learning (e.g., neural network architecture).
- In quantum machine learning, we refer to the architecture of the PQC $U(\theta)$ as the **ansatz** (from the German term for "approach" or "attempt").
- As for the model class in machine learning, one should choose the ansatz, if possible, based on domain knowledge (e.g., in quantum chemistry).

Mean-Field Ansatz

• The mean-field ansatz applies separate parameterized rotations on the qubits.

$$|0\rangle \begin{cases} \hline R(\theta_{0}^{1}, \theta_{0}^{2}, \theta_{0}^{3}) \\ \hline R(\theta_{1}^{1}, \theta_{1}^{2}, \theta_{1}^{3}) \\ \hline R(\theta_{2}^{1}, \theta_{2}^{2}, \theta_{2}^{3}) \\ \hline R(\theta_{3}^{1}, \theta_{3}^{2}, \theta_{3}^{3}) \\ \hline \end{cases}$$

Hardware-Efficient Ansatz

 The hardware-efficient ansatz applies layers of separate rotations and fixed multi-qubit, entangling, gates.

Hardware-Efficient Ansatz

• The multi-qubit entangling gate *U*_{ent} consists of a fixed cascade of **two-qubit gates**.

Ansatzes with Increasing/ Decreasing Number of Qubits

а

No. of qubits: increases

[Cerezo et al '22]

Unsupervised Learning via Born Machines

Unsupervised Generative Learning

- The measurement of the output of a PQC on *n* qubits produces a random *n*-bit string $x \sim p(x|\theta)$ by Born's rule.
- **Born machine**: Generative model for binary strings *x* implemented via a PQC⁵

⁵B. Coyle B, et al, "The Born supremacy: Quantum advantage and training of an Ising Born machine," Quantum Information, 2020.

Unsupervised Generative Learning

FIG. 4. 3×3 BARS-AND-STRIPES samples generated from the QCBMs. The circuit parameters used here are from the final stages of Adam training with different batch sizes N in Fig. 3(a). χ is the rate of generating valid samples in the training dataset. For illustrative purposes, we only show 12 samples for each situation with batch size N. [Liu and Wang '18]

Quantum Circuits as Samplers

• Current claims of **quantum supremacy**/ **advantage** rest on the capacity of quantum circuits to generate samples from **joint discrete distributions** in a more efficient manner than classical devices⁶.

Article

Quantum supremacy using a programmable superconducting processor

⁶X. Gao et al, "Enhancing generative models via quantum correlations," arXiv 2021.

Training Born Machines

- Training is based on comparing samples $x \sim p(x|\theta)$ with training data.
- This is done by minimizing a measure of divergence between data distribution and p(x|θ).
- This is expressed in the form of the **expected value of a cost observable**.

Gradient Descent

- Optimization is often carried out via gradient descent.
- Unlike classical machine learning models, **backprop** is **not** applicable, since we do not have access to internal workings of the PQC.
- The gradient is instead estimated via a perturbation-based method known as **parameter shift rule**.

Gradient Descent

- Optimization is often carried out via gradient descent.
- Unlike classical machine learning models, **backprop** is **not** applicable, since we do not have access to internal workings of the PQC.
- The gradient is instead estimated via a perturbation-based method known as **parameter shift rule**.

Barren Plateaus

• Implementing gradient descent is practically made complicated by the fact that the **loss landscape** with generic, **unstructured**, ansatzes is not well behaved as the number of qubits increases.⁷

⁷ J. McClean, et al, "Barren plateaus in quantum neural network training landscapes," Nature communications, 2018.

Supervised Learning: Probabilistic vs. Deterministic Models

Supervised Learning

- Input x is typically encoded in the operation of the PQC U(x, θ) in a manner similar to the model parameters θ (angle encoding).
- (There are other ways to embed classical information into a quantum state.)

Supervised Learning: Probabilistic Models

- For classification, the target variable is a binary string y ∈ {0,1}^m, with m ≤ n.
- Probabilistic models obtain a **randomized decision** *y* through a measurement of the qubits.

Supervised Learning: Deterministic Models

- Deterministic models implement a parameteric function $h_M(x|\theta)$ of the input x, which may be used for regression or classification.
- Function $h_M(x|\theta)$ is evaluated by estimating expectations of one or more observables.
- Unlike probabilistic modes, shot noise averaging is required also for inference (and not only for learning).

Supervised Learning: Deterministic Models

- Deterministic models implement a parameteric function $h_M(x|\theta)$ of the input x, which may be used for regression or classification.
- Function $h_M(x|\theta)$ is evaluated by estimating expectations of one or more observables.
- Unlike probabilistic modes, shot noise averaging is required also for inference (and not only for learning).

Supervised Learning: Deterministic Models

 Deterministic quantum models are akin to classical kernel methods in that they operate over a large feature space – the Hilbert space of dimension 2ⁿ – via linear operations.⁸

⁸M. Schuld, "Supervised quantum machine learning models are kernel methods," arXiv, 2021.

Osva	ldo.	Simeone	
0.510	iuo.	Sincone	

QML 43/56

Research Directions

Challenges

• Architecture:

- What are the "right" building blocks for quantum machine learning models?
- How to scale up classical input and/or output data?
- How to integrate classical and quantum machine learning models?

• Optimization:

- How to improve the performance of gradient descent in the presence of barren plateaus?
- How to account for "quantum noise"?
- Theory:
 - What are the data requirements for quantum machine learning, particularly for generative modeling?

Challenges

• Architecture:

- What are the "right" building blocks for quantum machine learning models?
- How to scale up classical input and/or output data?
- How to integrate classical and quantum machine learning models?

Optimization:

- How to improve the performance of gradient descent in the presence of barren plateaus?
- How to account for "quantum noise"?
- Theory:
 - What are the data requirements for quantum machine learning, particularly for generative modeling?

Challenges

• Architecture:

- What are the "right" building blocks for quantum machine learning models?
- How to scale up classical input and/or output data?
- How to integrate classical and quantum machine learning models?

Optimization:

- How to improve the performance of gradient descent in the presence of barren plateaus?
- How to account for "quantum noise"?

• Theory:

What are the data requirements for quantum machine learning, particularly for generative modeling?

Hybrid Classical-Quantum Models

- C-QC = classical data quantum-classical processing
- Possible two-way interaction between classical and quantum models
- Data generally processed and output by both models

Binary Neural Networks

- **Binary** neural network: ± 1 weights⁹
- We model the distribution $q(\theta)$ implicitly via a **Born machine**¹⁰

⁹W. Tang, et al, "How to train a compact binary neural network with high accuracy?," AAAI, 2017.

¹⁰ I. Nikoloska and O. Simeone, "Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks with Born Machines," IEEE MLSP, 2022.

Training on Noisy Quantum Computers

- Gradients are to be estimated using an actual NISQ computer.
- Quantum noise causes the estimate of the gradient to be biased.

Quantum Error Mitigation

- Quantum error correction to fully compensate for quantum noise requires increasing the number of qubits beyond the current reach of quantum technology.
- Quantum error mitigation trades space (qubits) with time, running multiple noisy circuits to emulate a noiseless one.¹¹

Quasi-probabilistic decomposition of ideal gate

¹¹K. Temme, et al, "Error mitigation for short- depth quantum circuits", Physical review letters, 2017.

Quantum Error Mitigation

- Quantum error correction to fully compensate for quantum noise requires increasing the number of qubits beyond the current reach of quantum technology.
- Quantum error mitigation trades space (qubits) with time, running multiple noisy circuits to emulate a noiseless one.¹¹

Quasi-probabilistic decomposition of ideal gate

 $^{^{11}}$ K. Temme, et al, "Error mitigation for short- depth quantum circuits", Physical review letters, 2017.

Training with Quantum Error Mitigation

• Quantum error mitigation removes the bias, but increases the variance.

Training with Quantum Error Mitigation

• Number of iterations required to ensure an error floor δ for a fixed number of measurements N_m per iteration (with respect to the solution for the noiseless circuit):¹²

Schemes	Iteration Complexity
shot-noise only	$\widetilde{\mathcal{O}}\left(\log \frac{1}{\delta} + \frac{V}{\mu\delta}\right)$
shot and gate noise	$\int \widetilde{\mathcal{O}}\left(\log \frac{1}{\delta - B^{\mathcal{E}}\mu} + \frac{V^{\mathcal{E}}}{\mu\delta}\right)$
shot and gate noise with QEM	$\widetilde{\mathcal{O}}\left(\log \frac{1}{\delta} + \frac{V^{\text{QEM}}}{\mu\delta}\right)$

Parameters	Scaling
variance V	$\mathcal{O}(D/N_m)$
bias $B^{\mathcal{E}}$	$\mathcal{O}(D\gamma)$
variance $V^{\mathcal{E}}$	$\mathcal{O}(Dc(\gamma)/N_m)$
variance V^{QEM}	$\mathcal{O}(c_1(\gamma)D/N_m) + \mathcal{O}(c_2(\gamma)D/N_c)$

¹²S. T. Jose and O. Simeone, "Error Mitigation-Aided Optimization of Parameterized Quantum Circuits," in preparation.

- Quantum machine learning is an emerging paradigm suited for NISQ computers.
- **Classical-quantum machine learning** may be of more immediate relevance for engineering applications, particularly when implemented using hybrid quantum-classical models...

	Fault-tolerant	Ovantum Computation and Quantum Enformation	Near-term	
# qubits	millions	440	10-1000	SIMILITY
errors	corrected		mitigated	
use	Shor, Grover, HHL		variational circuits	V
research	computational complexity		run it and see	
available	in 5-30 years?		now	
				[M. Schuld '2

• ...although one should be aware of the **differences** between tasks suitable for classical and quantum machine learning.

Property	Problems studied in quantum computing	Problems solved by machine learning
classical performance	\mathbf{low} – problems are carefully selected to be provably difficult for classical computers	high – machine learning is applied on an indus- trial scale and many algorithms run in linear time in practice
size of inputs	small – near-term algorithms are limited by small qubit numbers, while fault-tolerant algorithms usually take short bit strings	${\bf very}\;{\bf large}-{\bf may}$ be millions of tensors with millions of entries each
problem structure	${\bf very\ structured}$ – often exhibiting a periodic structure that can be exploited by interference	"messy" – problems are derived from the human or "real-world" domain and naturally complex to state and analyse
theoretical accessibility	${\bf high}$ – there is a large bias towards problems about which we can theoretically reason	shifting – theory is currently been re-built around the empirical success of deep learning
evaluating performance	computational complexity – the dominant measure to assess the performance of an algorithm is asymptotic runtime scaling	practical benchmarks – machine learning research puts a strong emphasis on empirical comparisons between methods

[Schuld and Killoran '22]

• In the long run, **quantum-quantum machine learning** applications to science and engineering may prove more impactful.

For More...

 O. Simeone, An Introduction to Quantum Machine Learning for Engineers, Foundations and Trends in Signal Processing, 2022, https://arxiv.org/abs/2205.09510