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Promises and Hype
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Players

[O Ezratty ‘22]
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Quantum Algorithms and Today’s Technology

The traditional design of quantum algorithms assumes large and
reliable quantum computers.

Quantum machine learning is emerging as a programming paradigm
suited for current noisy intermediate-scale quantum (NISQ)
computers.1

[M. Schuld ‘21]

1
M. Schuld and F. Petruccione, Machine Learning with Quantum Computers, Springer, 2021.
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Quantum Circuit
A quantum algorithm is specified by a quantum circuit operating on
a set of n qubits.
A quantum circuit consists of a sequence of quantum gates that
are applied sequentially and in place to the n qubits...

[Hidary ‘19]
Osvaldo Simeone QML 7 / 56



Quantum Circuit

... followed by measurements that convert the state of the n qubits
into n classical bits.

[Hidary ‘19]
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Quantum Circuit
The state of n qubits is described by a 2n-dimensional complex
(amplitude) vector.

Quantum measurements are inherently random: “collapse” of the
waveform.

[Hidary ‘19]
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Quantum Circuit

State vectors are represented using Dirac’s ket notation |ψ⟩.

[Hidary ‘19]
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Parameterized Quantum Circuit
A parameterized quantum circuit (PQC) is defined by a fixed
sequence of quantum gates whose operation depends on a vector of
classical parameters θ.
PQCs are also known as quantum neural networks.

[Hidary ‘19]
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Classical Machine Learning

Classical machine learning relies on parameterized functions f (x |θ),
e.g., neural networks.

The parameters θ are optimized by comparing the model output with
classical data.

classical 

optimizer

classical dataclassical data
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Quantum Machine Learning

In quantum machine learning, the parameters of the PQC U(θ) are
designed using classical optimization based on measurements of the
output of the PQC and (possibly) data.

By keeping the quantum computer in the loop, the classical optimizer
can account for the non-idealities and limitations of quantum
operations.

classical 

optimizer

average

Osvaldo Simeone QML 13 / 56



Quantum Machine Learning

In quantum machine learning, the parameters of the PQC U(θ) are
designed using classical optimization based on measurements of the
output of the PQC and (possibly) data.

By keeping the quantum computer in the loop, the classical optimizer
can account for the non-idealities and limitations of quantum
operations.

classical 

optimizer

average

Osvaldo Simeone QML 13 / 56



Quantum Machine Learning: Functionalities

[Cerezo et al ‘22]
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Quantum Machine Learning: Applications?

https://quantumcomputingreport.com/
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Quantum Machine Learning:

A Taxonomy
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Quantum Machine Learning
Generalizing classical machine learning, in quantum machine learning
data and/or processing are quantum.

[Cerezo et al ‘22]
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Quantum Machine Learning: CQ
Currently, the most common quantum machine learning case is “CQ”:
data are classical, while processing is quantum.

The measurement outputs are compared to classical data to optimize
parameters θ.

Can implement (more efficiently?) classical machine learning tasks.
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Quantum Machine Learning: QQ

In the “QQ” case, the quantum state produced by the PQC is
compared with quantum data to optimize θ.

classical 

optimizer

average

classical dataquantum data

quantum

loss
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Quantum Machine Learning: QQ

Quantum autoencoders for compression2

2
J. Romero, et al, “Quantum autoencoders for efficient compression of quantum data,” Quantum Science and Technology,

2017.
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Quantum Machine Learning: QQ

Quantum generative adversarial networks3

3
P. Dallaire-Demers and N. Killoran, “Quantum generative adversarial networks,” Physical Review A, 2018.
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Quantum Machine Learning: QC

In the “QC” case, there is no PQC, and the outputs of measurements
of a quantum state are processed by a classical machine learning
model.

Example: quantum tomography4.

classical 

optimizer

classical dataquantum data

average

4
V. Gebhart, “Learning quantum systems,” arXiv:2207.00298 , 2022.
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Parameterized Quantum Circuits
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Quantum Circuit
Quantum gates implement multiplications by unitary matrices
(reversible norm-preserving linear transformations).
Measurements convert quantum information into n classical, random,
bits by following Born’s rule:

▶ Given the 2n × 1 state vector |ψ⟩ = [αx ] with x ∈ {0, 1}n

Pr[bit string x ]=p(x) = |αx |2

[Hidary ‘19]
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Quantum Circuit

Measurement outputs may be averaged to mitigate shot noise:
▶ x → real number ox = realization of an observable
▶ ⟨O⟩ = expected values of the observable

[Hidary ‘19]
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Parameterized Quantum Circuit
A PQC is defined by a fixed sequence of quantum gates that can
depend on a vector of classical parameters θ:

▶ Parameterized unitary matrix U(θ)

[Hidary ‘19]
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Ansatz

The choice of the architecture of the PQC is akin to the choice of the
model class in classical machine learning (e.g., neural network
architecture).

In quantum machine learning, we refer to the architecture of the PQC
U(θ) as the ansatz (from the German term for “approach” or
“attempt”).

As for the model class in machine learning, one should choose the
ansatz, if possible, based on domain knowledge (e.g., in quantum
chemistry).
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Mean-Field Ansatz

The mean-field ansatz applies separate parameterized rotations on the
qubits.
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Hardware-Efficient Ansatz
The hardware-efficient ansatz applies layers of separate rotations and fixed
multi-qubit, entangling, gates.

… …

…
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Hardware-Efficient Ansatz
The multi-qubit entangling gate Uent consists of a fixed cascade of
two-qubit gates.

linear entangling gate 

(based on CZ)
full entangling gate 

(based on CZ)
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Ansatzes with Increasing/ Decreasing Number of Qubits

[Cerezo et al ‘22]
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Unsupervised Learning

via Born Machines
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Unsupervised Generative Learning

The measurement of the output of a PQC on n qubits produces a
random n-bit string x ∼ p(x |θ) by Born’s rule.

Born machine: Generative model for binary strings x implemented
via a PQC5

sample generation

5
B. Coyle B, et al, “The Born supremacy: Quantum advantage and training of an Ising Born machine,” Quantum

Information, 2020.
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Unsupervised Generative Learning

FIG. 4. 3 × 3 BARS-AND-STRIPES samples generated from
the QCBMs. The circuit parameters used here are from the final
stages of Adam training with different batch sizes N in Fig. 3(a).
χ is the rate of generating valid samples in the training dataset. For
illustrative purposes, we only show 12 samples for each situation
with batch size N . [Liu and Wang '18]
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Quantum Circuits as Samplers

Current claims of quantum supremacy/ advantage rest on the
capacity of quantum circuits to generate samples from joint discrete
distributions in a more efficient manner than classical devices6.

[Arute et al ‘19]

6
X. Gao et al, “Enhancing generative models via quantum correlations,” arXiv 2021.

Osvaldo Simeone QML 35 / 56



Training Born Machines

Training is based on comparing samples x ∼ p(x |θ) with training
data.

This is done by minimizing a measure of divergence between data
distribution and p(x |θ).
This is expressed in the form of the expected value of a cost
observable.

[Tian et al ‘22]
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Gradient Descent
Optimization is often carried out via gradient descent.
Unlike classical machine learning models, backprop is not applicable,
since we do not have access to internal workings of the PQC.

The gradient is instead estimated via a perturbation-based method
known as parameter shift rule.

-

average (𝑁𝑆 shots)

average (𝑁𝑆 shots)

repeat for d=1,…,D

estimate of

1

2
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Barren Plateaus

Implementing gradient descent is practically made complicated by the
fact that the loss landscape with generic, unstructured, ansatzes is
not well behaved as the number of qubits increases.7

[

[Wang et al ‘22]

7
J. McClean, et al, “Barren plateaus in quantum neural network training landscapes,” Nature communications, 2018.
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Supervised Learning:

Probabilistic vs. Deterministic Models
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Supervised Learning

Input x is typically encoded in the operation of the PQC U(x , θ) in a
manner similar to the model parameters θ (angle encoding).

(There are other ways to embed classical information into a quantum
state.)

Osvaldo Simeone QML 40 / 56



Supervised Learning: Probabilistic Models

For classification, the target variable is a binary string y ∈ {0, 1}m,
with m ≤ n.

Probabilistic models obtain a randomized decision y through a
measurement of the qubits.

Osvaldo Simeone QML 41 / 56



Supervised Learning: Deterministic Models

Deterministic models implement a parameteric function hM(x |θ) of
the input x , which may be used for regression or classification.

Function hM(x |θ) is evaluated by estimating expectations of one or
more observables.

Unlike probabilistic modes, shot noise averaging is required also for
inference (and not only for learning).

inference

average
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Supervised Learning: Deterministic Models

Deterministic quantum models are akin to classical kernel methods
in that they operate over a large feature space – the Hilbert space of
dimension 2n – via linear operations.8

8
M. Schuld, “Supervised quantum machine learning models are kernel methods,” arXiv, 2021.
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Research Directions
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Challenges

Architecture:
▶ What are the “right” building blocks for quantum machine learning

models?
▶ How to scale up classical input and/or output data?
▶ How to integrate classical and quantum machine learning models?

Optimization:
▶ How to improve the performance of gradient descent in the presence of

barren plateaus?
▶ How to account for “quantum noise”?

Theory:
▶ What are the data requirements for quantum machine learning,

particularly for generative modeling?
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Hybrid Classical-Quantum Models
C-QC = classical data - quantum-classical processing

Possible two-way interaction between classical and quantum models

Data generally processed and output by both models

classical 

data

𝑈(∙, 𝜃)

𝑓(∙, 𝜙)

classical

outputs

classical model

quantum model
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Binary Neural Networks

Binary neural network: ±1 weights9

We model the distribution q(θ) implicitly via a Born machine10

9
W. Tang, et al, “How to train a compact binary neural network with high accuracy?,” AAAI, 2017.

10
I. Nikoloska and O. Simeone, “Quantum-Aided Meta-Learning for Bayesian Binary Neural Networks with Born

Machines,” IEEE MLSP, 2022.
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Training on Noisy Quantum Computers
Gradients are to be estimated using an actual NISQ computer.

Quantum noise causes the estimate of the gradient to be biased.
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Quantum Error Mitigation
Quantum error correction to fully compensate for quantum noise
requires increasing the number of qubits beyond the current reach of
quantum technology.

Quantum error mitigation trades space (qubits) with time, running
multiple noisy circuits to emulate a noiseless one.11

11
K. Temme, et al, “Error mitigation for short- depth quantum circuits”, Physical review letters, 2017.
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Training with Quantum Error Mitigation
Quantum error mitigation removes the bias, but increases the
variance.
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Training with Quantum Error Mitigation

Number of iterations required to ensure an error floor δ for a fixed
number of measurements Nm per iteration (with respect to the
solution for the noiseless circuit):12

12
S. T. Jose and O. Simeone, “Error Mitigation-Aided Optimization of Parameterized Quantum Circuits,” in preparation.
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Conclusions
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Conclusions

Quantum machine learning is an emerging paradigm suited for NISQ
computers.

Classical-quantum machine learning may be of more immediate
relevance for engineering applications, particularly when implemented
using hybrid quantum-classical models...

[M. Schuld ‘21]
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Conclusions
...although one should be aware of the differences between tasks
suitable for classical and quantum machine learning.

[Schuld and Killoran ‘22]
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Conclusions
In the long run, quantum-quantum machine learning applications
to science and engineering may prove more impactful.

[Huang et al ‘22]
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For More...

O. Simeone, An Introduction to Quantum Machine Learning for
Engineers, Foundations and Trends in Signal Processing, 2022,
https://arxiv.org/abs/2205.09510
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