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Autoregressive with External Input (ARX) Model

An ARX model is in form of

n n
Yt = Zifl ajye—i + Zifl Bive_i +Ne_q,

with output yq,
Input ug,
noise 1 ~ N(0,07).

Orders: n,, ng

Data: Trajectories {u;, ¥: }i—g

Goal: estimate the model
parameters a;, [;
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A simple model used many places
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s a linear model a strong assumption?

A nonlinear model

Ver1 = f (Ve Ue)
Collect data yq, Ug, V1, Uq, o) Uk, Vi -

Fit an ARX model
Ny ng
Ve = z a;ye—i + Z Biug—i -
=1 =1

Recent progress in Koopman theory shows that many nonlinear systems can
be approximated by an ARX-type model very well as long as n, and ng are
large enough.

-> delay coordinates are “universal” class of observables [1]
[1] Brunton, Steven L., et al. "Modern Koopman theory for dynamical systems." arXiv preprint arXiv:2102.12086 (2021).
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s a linear model a strong assumption?

A nonlinear model

Ve+1 = Sin(ye)
Collect data yy, 1, ..., VT

Fit an ARX model with order n

n
Yt = 2 AiVe—i -
i=1

Test with one-step prediction averaged over 5000 samples



s a linear model a strong assumption?

1-step prediction error
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s a linear model a strong assumption?

Brunton, Steven L., et al. "Modern Koopman theory for dynamical systems." arXiv preprint arXiv:2102.12086 (2021).

Measure Delay

Coordinates A linear model can

approximately the 3D curve
very well except at the
“switching point”!
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ARX Identification Setup

* True ARX Model:
Ve = Z?zal aye—i + Z?fl Bivue_i +Ne_q.
Assume that the orders n, and ng are unknown.
* Hypothesis class: ) )
Ny ng
Ve = z aye—i + Biue—i,

=1 =1
for some n, and ng greater than the true orders n, and ng
-> Overparameterization (learn more parameters than required).

* Goal: Learn 8 = (aq, ..., aﬁa,ﬁl, ...,,Bﬁﬂ) from data.



What are the ground truth parameters?

Goal: Learn 8 = (ay, ..., aﬁa,ﬁl, ...,,Bﬁﬁ) from data.

Intuitively speaking, the ground truth is the parameters in the true
model + zeros. That is,

Bo = (1, ) X0 0, ., 0, By, o, By, 0, ., 0)).



What are the ground truth parameters?

Say the ground-truth ARX model is
Ve = 05Ye 1+ U1 +M21 (1)
Its orderisn, = ng = 1.
Note that y;_1 = 0.5y;_5 + us_» + ns_5
0=—=y;1+05y; >, +ur o, +nn (2

Then, (1) +c(2) for any constant ¢ gives another ground-truth model!
Ve = (0.5 = ¢)yp—q1 + 0.5¢yp +up_q + cup_y + Mg +cney 3)

(3) is equivalent to (1) but with orders n, = ng = 2.



What are the ground truth parameters?

The ground-truth ARX model is
Ve = 05Ye 1+ U1 +M21 (1)
If we select the hypothesis class with n,=ng=2:
Ng ng
Ve = z aiye—i+ ) Pille_i
=1 1=1
The unknown parameters are 6 = (a4, a5, 1, 52).

The set of ground truth parameters is
® ={(0.5—-1¢0.5¢,1,c)|c € R}.

ye = (0.5 =¢)ye—q +0.5¢cyep +Upq + CUp_p + Mg + Ny



Question: are those ground truth parameters
equally good?
True model is equivalent to:
Ve = (0.5 =¢)ye—1 +0.5¢cy; 5 +uUsg + Uy + Mg + €Ny
Suppose an algorithm that learns one of the ground truth for some c:
6. =(0.5—-1¢0.5¢1,c).

Then, the expected prediction error of the learned model is

E[(e — $:)°] = E[(ve — $)°] = E[(p—q + ene—2)?] = (1 + CZ)U%

So among all the ground truth, 8, = (0.5, 0, 1, 0) minimizes the
prediction error!

ne ~ N(0,07)



Properties of 6

* True model: y; = 0.5y;_1 + Ur_q + N¢_q
° HO — (05, 0, 1, 0) IS

* the parameters of the minimal-order true model,

* the parameters that minimizes the prediction error;
* the most sparse parameter in @ = {(0.5 — ¢,0.5¢,1,c)|c € R}

* |[deally, we want the system identification algorithm to learn 8, in 0.



Properties of 6

* True model: y; = 0.5y;_1 + Ur_q + N¢_q
° HO — (05, 0, 1, 0) IS

* the parameters of the minimal-order true model,

* the parameters that minimizes the prediction error;

* the most sparse parameterin @ = {(0.5 — ¢,0.5¢,1,c)|c € R} 2needa l;
regularization?

* |[deally, we want the system identification algorithm to learn 8, in ©.
* Next, we show that regular least-squares does the job!



Least-squares setup (multiple-trajectory case)

* Suppose that multiple independent trajectories can be sampled

v D) v 1 N

Experiment 1:y, ", Uy 7, ooy Up 24, Yy 1
~ k ~ (K
(2) , (2) (2) ,,@2) b= mlﬁnNz (y} | y; ))
Experiment 2: yy ", Uy 7, oo, Up 21, Y - P
" {y k k
N N s.tyé) z AiYr )l+2 ,BL ()
Experiment N: y( ) ( ), u(T )1,)’; ) ) -

.

« Since we have closed-solution of , it is possible to show that IE[@] = 6,.
* For the RLS estimate 8, we study its sample complexity (how many samples are

needed to guarantee ” < € with high probability?)




Sample Complexity Analysis
(Multi-Trajectory)

Theorem 1:
Suppose that

=, + g

Y, is covariance matrix of the regressor

70 =Y

* u; and e; are i.i.d zero-mean Gaussian variables with a,, > 0, g;, > 0.

T = max(ﬁa,ﬁﬁ) + 1

Then, if the sample size N is large enough, with probability 1 — 9,

160, |(1+7)]IZ;]]log(5)

16 = 6ol <

o(Zz) \ N

\

log(5)

N



Least-squares setup (single-trajectory case)

e Suppose that only one trajectory is sampled
T

~ 1
Experiment: yo ,uo ) ...,uT_l, yT m—> 8 — mlﬁnf Z (yk — 5’\]{)2
ai,pi

k=max(ng,ng)

Ny ng
S.t Y = z iV + z 1,3iuk—i
= =

« Different from the multiple trajectory case, analyze the RLS estimate 8 in the
single-trajectory case is difficult due to correlations between regressors.



Correlations in LS

6 =min||20 - YI[, = (2T2)72TY

Proof idea: We want to show how fast the least singular value of the matrix ZT Z goes to infinity as N increases.

Multiple trajectory setup

k »o o ® %)
. 34_)1 Y;_)ﬁa Ur—g = Ur—gg
- k+1 k+1 (k+1) (k+1)
3’;_1 - ’1(’—ﬁa,) Ur—g ™ = Ur_qy

The rows of Z are independent to each other;
The entries in each row are correlated.

. E[é] is easy to compute

e Standard tools in high-dimensional probability
can be applied if you know the trick.

Single trajectory setup

Yk-1 Yk-2 = Yi-ng UYk-1 Ug-2 - Uk-7g
Ve Vi-1 - YVk-fig+1 Yk Uk-1 - Uksi-7g

The rows of Z are correlated;
The entries in each row are correlated too.

. E[é] is difficult to compute

* Mixing-time type arguments are needed to
bound the correlation between rows.




Sample Complexity Analysis
(Single-Trajectory)

* Theorem 2: Suppose that

* the magnitude p™ of the largest pole is less than 1;

* U; and e; are i.i.d zero-mean Gaussian variables with a,, > 0, g;, > 0.

If n, = ny, and g = ng, then for T large enough, with probability 1 — o, the
OLS estimation error satisfies

6 — 90” <0 (1_Tp* Zz\/(ﬁa+ﬁ£)logT10g (g))

Remark:

*7/(1 — p”) is an upper bound of the H,, norm of the ARX model, and o, /0y, is the
noise-to-input ratio.

* The OLS estimator @ converges to the most sparse solution 8, in the single-trajectory
setup.



More remarks:

*Since AR and FIR models are special cases of ARX model, the theorem
above can be applied to those models.

* For multiple-trajectory setup, the ARX model does not need to have
all poles inside the unit circle.

e Theorem 1 can be extended to vector ARX models.



A brief literature review

* The overparameterized LS estimate converges to the most sparse
solution 6, in both single-trajectory and multi-trajectory setup

—self regularization or implicit regularization!

e Jones, D., Dahleh, M., Non-Parametric Finite Time Identification of Closed Loop Systems, ACC

2022, forthcoming

e Ljung, L., & Wahlberg, B. (1992). Asymptotic properties of the

least-squares method for estimating transfer functions and disturbance
spectra. Advances in Applied Probability, 24(2), 412-440.

e Candes, E. J. (2006). Modern statistical estimation via oracle

inequalities. Acta numerica, 15, 257-325.

Method

Guarantees

Pros/
Cons/
Comments

Previous works
[Jones and Dahleh, 2022]
[Ljung and Wahlberg, 1992]

RLS: 6 — argglﬂxzrf_‘l’r - gzr]: + ,:[”é”:

J1og(T/1) + A
VT

16 — 6] = o( )

Tuning A is needed.

Manifests the “oracle property”

[Candes 2006]

Our work

OLS: 8 — at‘gl_'tla:-:Erffl’r - ﬁzr]:
g

J10g(T)
VT

“self-regularization”

The first finite sample
result for OLS on unknown
(and known)-order ARX
models

|6 — 8| < o( )

22




Experiments
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summary

A self-regularization property in RLS-based ARX identification
* Sample complexity bounds for RLS estimates in different setups.

“Sample Complexity Analysis and Self-regularization in Identification of
Over-parameterized ARX Models”

Conference version will be presented at CDC 2022.




