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Autoregressive with External Input (ARX) Model
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An ARX model is in form of 

𝑦𝑡 = σ
𝑖=1
𝑛𝛼 𝛼𝑖𝑦𝑡−𝑖 + σ

𝑖=1

𝑛𝛽 𝛽𝑖𝑢𝑡−𝑖 + 𝜂𝑡−1, 

with output 𝑦𝑡, 
input 𝑢𝑡, 

noise 𝜂𝑡 ∼ 𝒩 0, 𝜎𝜂
2 .

Orders: 𝑛 𝛼 , 𝑛𝛽

Data: Trajectories {𝑢𝑡 , 𝑦𝑡}𝑡=0
𝑇

Goal: estimate the model 
parameters 𝛼𝑖, 𝛽𝑖



A simple model used many places
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Price of Bitcoin Brain Signals

Man-made Control Systems

Infection Rates



Is a linear model a strong assumption?

A nonlinear model
𝑦𝑡+1 = 𝑓 𝑦𝑡 , 𝑢𝑡

Collect data 𝑦0, 𝑢0, 𝑦1, 𝑢1, … , 𝑢𝑘 , 𝑦𝑘 , …
Fit an ARX model 

𝑦𝑡 =෍
𝑖=1

𝑛𝛼
𝛼𝑖𝑦𝑡−𝑖 +෍

𝑖=1

𝑛𝛽
𝛽𝑖𝑢𝑡−𝑖 .

Recent progress in Koopman theory shows that many nonlinear systems can 
be approximated by an ARX-type model very well as long as 𝑛𝛼 and 𝑛𝛽 are 
large enough.
-> delay coordinates are “universal” class of observables [1]
[1] Brunton, Steven L., et al. "Modern Koopman theory for dynamical systems." arXiv preprint arXiv:2102.12086 (2021).
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Is a linear model a strong assumption?
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A nonlinear model
𝑦𝑡+1 = sin(𝑦𝑡)

Collect data 𝑦0, 𝑦1, … , 𝑦𝑇
Fit an ARX model with order 𝑛

𝑦𝑡 =෍
𝑖=1

𝑛

𝛼𝑖𝑦𝑡−𝑖 .

Test with one-step prediction averaged over 5000 samples
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𝑦0 ∈ [−1,1] 𝑦0 ∈ [−5,5]

Is a linear model a strong assumption?
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Is a linear model a strong assumption?
Brunton, Steven L., et al. "Modern Koopman theory for dynamical systems." arXiv preprint arXiv:2102.12086 (2021).

A linear model can 
approximately the 3D curve 
very well except at the 
“switching point”!



ARX Identification Setup

• True ARX Model: 

𝑦𝑡 = σ
𝑖=1
𝑛𝛼 𝛼𝑖𝑦𝑡−𝑖 + σ

𝑖=1

𝑛𝛽 𝛽𝑖𝑢𝑡−𝑖 + 𝜂𝑡−1.

Assume that the orders 𝑛𝛼 and 𝑛𝛽 are unknown.

• Hypothesis class:

𝑦𝑡 =෍
𝑖=1

ത𝑛𝛼
𝛼𝑖𝑦𝑡−𝑖 +෍

𝑖=1

ത𝑛𝛽
𝛽𝑖𝑢𝑡−𝑖 ,

for some ത𝑛𝛼 and ത𝑛𝛽 greater than the true orders 𝑛𝛼 and 𝑛𝛽
-> Overparameterization (learn more parameters than required).

• Goal: Learn 𝜃 = (𝛼1, … , 𝛼 ത𝑛𝛼 , 𝛽1, … , 𝛽ത𝑛𝛽
) from data.

8



What are the ground truth parameters?

Goal: Learn 𝜃 = (𝛼1, … , 𝛼 ത𝑛𝛼 , 𝛽1, … , 𝛽ത𝑛𝛽
) from data.

Intuitively speaking, the ground truth is the parameters in the true 
model + zeros. That is,

𝜃0 = 𝛼1, … , 𝛼𝑛𝛼 , 0, … , 0, 𝛽1, … , 𝛽𝑛𝛽 , 0, … , 0 .
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What are the ground truth parameters?

Say the ground-truth ARX model is
𝑦𝑡 = 0.5𝑦𝑡−1 + 𝑢𝑡−1 + 𝜂𝑡−1

Its order is n𝛼 = 𝑛𝛽 = 1.

Note that 𝑦𝑡−1 = 0.5𝑦𝑡−2 + 𝑢𝑡−2 + 𝜂𝑡−2
0 = −𝑦𝑡−1 + 0.5𝑦𝑡−2 + 𝑢𝑡−2 + 𝜂𝑡−2

Then, (1) +𝑐(2) for any constant 𝑐 gives another ground-truth model!
𝑦𝑡 = 0.5 − 𝑐 𝑦𝑡−1 + 0.5𝑐𝑦𝑡−2 + 𝑢𝑡−1 + 𝑐𝑢𝑡−2 + 𝜂𝑡−1 + 𝑐𝜂𝑡−2

(3) is equivalent to (1) but with orders n𝛼 = 𝑛𝛽 = 2.
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(1)

(2)

(3)



What are the ground truth parameters?
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The ground-truth ARX model is
𝑦𝑡 = 0.5𝑦𝑡−1 + 𝑢𝑡−1 + 𝜂𝑡−1

If we select the hypothesis class with ത𝑛𝛼= ത𝑛𝛽=2 :

𝑦𝑡 =෍
𝑖=1

ത𝑛𝛼
𝛼𝑖𝑦𝑡−𝑖 +෍

𝑖=1

ത𝑛𝛽
𝛽𝑖𝑢𝑡−𝑖

The unknown parameters are 𝜃 = 𝛼1, 𝛼2, 𝛽1, 𝛽2 .

The set of ground truth parameters is 
Θ = { 0.5 − 𝑐, 0.5𝑐, 1, 𝑐 |𝑐 ∈ 𝑅}.

(1)

𝑦𝑡 = 0.5 − 𝑐 𝑦𝑡−1 + 0.5𝑐𝑦𝑡−2 + 𝑢𝑡−1 + 𝑐𝑢𝑡−2 + 𝜂𝑡−1 + 𝑐𝜂𝑡−2

Θ𝜃0



Question: are those ground truth parameters 
equally good?
True model is equivalent to:

𝑦𝑡 = 0.5 − 𝑐 𝑦𝑡−1 + 0.5𝑐𝑦𝑡−2 + 𝑢𝑡−1 + 𝑐𝑢𝑡−2 + 𝜂𝑡−1 + 𝑐𝜂𝑡−2
Suppose an algorithm that learns one of the ground truth for some 𝑐:

𝜃𝑐 = 0.5 − 𝑐, 0.5𝑐, 1, 𝑐 .

Then, the expected prediction error of the learned model is
𝔼 𝑦𝑡 − ො𝑦𝑡

2 = 𝔼 𝑦𝑡 − ො𝑦𝑡
2 = 𝔼 𝜂𝑡−1 + 𝑐𝜂𝑡−2

2 = 1 + 𝑐2 𝜎𝜂
2

So among all the ground truth, 𝜃0 = 0.5, 0, 1, 0 minimizes the 
prediction error!
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𝜂𝑡 ∼ 𝒩 0, 𝜎𝜂
2



Properties of 𝜃0

• True model: 𝑦𝑡 = 0.5𝑦𝑡−1 + 𝑢𝑡−1 + 𝜂𝑡−1
• 𝜃0 = 0.5, 0, 1, 0 is

• the parameters of the minimal-order true model;

• the parameters that minimizes the prediction error;

• the most sparse parameter in Θ = { 0.5 − 𝑐, 0.5𝑐, 1, 𝑐 |𝑐 ∈ 𝑅}

• Ideally, we want the system identification algorithm to learn 𝜃0 in Θ.
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Properties of 𝜃0

• True model: 𝑦𝑡 = 0.5𝑦𝑡−1 + 𝑢𝑡−1 + 𝜂𝑡−1
• 𝜃0 = 0.5, 0, 1, 0 is

• the parameters of the minimal-order true model;

• the parameters that minimizes the prediction error;

• the most sparse parameter in Θ = { 0.5 − 𝑐, 0.5𝑐, 1, 𝑐 |𝑐 ∈ 𝑅}→need a 𝑙1
regularization?

• Ideally, we want the system identification algorithm to learn 𝜃0 in Θ.

• Next, we show that regular least-squares does the job!
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Least-squares setup (multiple-trajectory case)

• Suppose that multiple independent trajectories can be sampled
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Experiment N: 𝑦0
(𝑁)

, 𝑢0
(𝑁)

, … , 𝑢𝑇−1
(𝑁)

, 𝑦𝑇
(𝑁)

Experiment 1: 𝑦0
(1)
, 𝑢0

(1)
, … , 𝑢𝑇−1

(1)
, 𝑦𝑇

(1)

Experiment 2: 𝑦0
(2)
, 𝑢0

(2)
, … , 𝑢𝑇−1

2
, 𝑦𝑇

2

…

෠𝜃 = min
𝛼𝑖,𝛽𝑖

1

𝑁
෍

𝑘=1

𝑁

𝑦𝑇
𝑘
− ො𝑦𝑇

𝑘
2

𝑠. 𝑡 ො𝑦𝑇
𝑘
=෍

𝑖=1

ത𝑛𝛼
𝛼𝑖𝑦𝑇−𝑖

(𝑘)
+෍

𝑖=1

ത𝑛𝛽
𝛽𝑖𝑢𝑇−𝑖

(𝑘)

• Since we have closed-solution of ෠𝜃, it is possible to show that 𝔼 ෠𝜃 = 𝜃0.

• For the RLS estimate ෠𝜃, we study its sample complexity (how many samples are 

needed to guarantee ෠𝜃 − 𝜃0 < 𝜖 with high probability?)



Sample Complexity Analysis
(Multi-Trajectory)
Theorem 1:

Suppose that

• 𝑢𝑡 and 𝑒𝑡 are i.i.d zero-mean Gaussian variables with 𝜎𝑢 > 0, 𝜎𝜂 > 0.

• 𝑇 ≥ max ത𝑛𝛼 , ത𝑛𝛽 + 1

Then, if the sample size 𝑁 is large enough, with probability 1 − 𝛿,

‖ መ𝜃 − 𝜃0‖2 ≤
16𝜎𝜂

𝜎 Σ𝑧

1+ ത𝑛 Σ𝑧 log
18

𝛿

𝑁
= 𝒪

log
18

𝛿

𝑁
.
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ത𝑛= ത𝑛𝛼 + ത𝑛𝛽
Σ𝑧 is covariance matrix of the regressor

𝑍 መ𝜃 = Y



Least-squares setup (single-trajectory case)

• Suppose that only one trajectory is sampled
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Experiment: 𝑦0 , 𝑢0 , … , 𝑢𝑇−1, 𝑦𝑇 ෠𝜃 = min
𝛼𝑖,𝛽𝑖

1

𝑇
෍

𝑘=max( ത𝑛𝛼, ത𝑛𝛽)

𝑇

𝑦𝑘 − ො𝑦𝑘
2

𝑠. 𝑡 ො𝑦𝑘 =෍
𝑖=1

ത𝑛𝛼
𝛼𝑖𝑦𝑘−𝑖 +෍

𝑖=1

ത𝑛𝛽
𝛽𝑖𝑢𝑘−𝑖

• Different from the multiple trajectory case, analyze the RLS estimate ෠𝜃 in the 
single-trajectory case is difficult due to correlations between regressors.



Correlations in LS
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෠𝜃 = min
𝜃

𝑍𝜃 − Y
2

2
= (𝑍𝑇𝑍)−1𝑍𝑇𝑌

Multiple trajectory setup Single trajectory setup

Proof idea: We want to show how fast the least singular value of the matrix 𝑍𝑇𝑍 goes to infinity as 𝑁 increases.

𝑍 =

…
…

𝑦𝑇−1
(𝑘)

… 𝑦𝑇− ത𝑛𝛼

(𝑘) 𝑢𝑇−1
(𝑘)

… 𝑢𝑇− ത𝑛𝛽

(𝑘)

𝑦𝑇−1
(𝑘+1)

… 𝑦𝑇− ത𝑛𝛼

(𝑘+1) 𝑢𝑇−1
(𝑘+1)

… 𝑢𝑇− ത𝑛𝛽

(𝑘+1)

…
…

𝑍 =

…
…

𝑦𝑘−1 𝑦𝑘−2 … 𝑦𝑘− ത𝑛𝛼
𝑢𝑘−1 𝑢𝑘−2 … 𝑢𝑘− ത𝑛𝛽

𝑦𝑘 𝑦𝑘−1 … 𝑦𝑘− ത𝑛𝛼+1
𝑢𝑘 𝑢𝑘−1 … 𝑢𝑘+1− ത𝑛𝛽

…
…

The rows of 𝑍 are independent to each other;
The entries in each row are correlated.

• 𝔼 መ𝜃 is easy to compute

• Standard tools in high-dimensional probability 
can be applied if you know the trick.

The rows of 𝑍 are correlated;
The entries in each row are correlated too.

• 𝔼 መ𝜃 is difficult to compute

• Mixing-time type arguments are needed to 
bound the correlation between rows.



Sample Complexity Analysis
(Single-Trajectory)
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• Theorem 2: Suppose that
• the magnitude 𝜌∗ of the largest pole is less than 1;
• 𝑢𝑡 and 𝑒𝑡 are i.i.d zero-mean Gaussian variables with 𝜎𝑢 > 0, 𝜎𝜂 > 0.

If ത𝑛𝛼 ≥ 𝑛𝛼 and ത𝑛𝛽 ≥ 𝑛𝛽, then for 𝑇 large enough, with probability 1 − 𝛿, the 
OLS estimation error satisfies

• መ𝜃 − 𝜃0 ≤ 𝑂
𝜏

1−𝜌∗

𝜎𝜂

𝜎𝑢

ത𝑛𝛼+ ത𝑛𝛽 log 𝑇

𝑇
log

𝑇

𝛿
.

Remark: 
• 𝜏/(1 − 𝜌∗) is an upper bound of the 𝐻∞ norm of the ARX model, and 𝜎𝜂/𝜎𝑢 is the 

noise-to-input ratio.

• The OLS estimator ෠𝜃 converges to the most sparse solution 𝜃0 in the single-trajectory 
setup.



More remarks:

•Since AR and FIR models are special cases of ARX model, the theorem 
above can be applied to those models.

•For multiple-trajectory setup, the ARX model does not need to have 
all poles inside the unit circle. 

•Theorem 1 can be extended to vector ARX models.

21



A brief literature review

• The overparameterized LS estimate converges to the most sparse
solution 𝜃0 in both single-trajectory and multi-trajectory setup 

→self regularization or implicit regularization!
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Experiments
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𝑛𝛼 = 𝑛𝛽 = 10, 𝜎𝑢 = 𝜎𝜂 = 1, 𝜌∗ = 0.85



Summary

• A self-regularization property in RLS-based ARX identification

• Sample complexity bounds for RLS estimates in different setups.

“Sample Complexity Analysis and Self-regularization in Identification of 
Over-parameterized ARX Models”

Conference version will be presented at CDC 2022.
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