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Context 

• ML and optimization: two way integration
• In this talk…. mainly combinatorial optimization perspective

• Many optimization approaches for hosting ML components
• In this talk…. mainly constraint programming



Motivation

What makes a decision/optimization problem complex?



A Case Study: Traffic Light Placement

Add/remove traffic lights in a city
Traffic lights can be connected (green wave)
Every operation has a cost
Budget limit
Objective: improve traffic flow



A Case Study: Traffic Light Placement

Add/remove traffic lights in a city
Traffic lights can be connected (green wave)
Every operation has a cost
Budget limit
Objective: improve traffic flow

How do we model the link between
traffic light location and traffic figures?
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Reach a renewable generation quota
Objective: minimize cost



A Case Study: RES Incentive Design

Assign resources to incentive actions
Reach a renewable generation quota
Objective: minimize cost

How do we model the link between
incentives and RES adoption?
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Satisfy temporal and QoS constraints
Keep avg temperature below threshold
Objective: avoid hot spots
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A Case Study: Thermal Aware workload
dispatching

Assign software functions (jobs) to hardware 
resources (cores/mem)
Satisfy temporal and QoS constraints
Keep avg temperature below threshold
Objective: avoid hot spots

How do we model the link between job 
dispatching and temperature/efficiency?

Thermal simulator available !!!

Temperature is linked to core 
efficiency as there are thermal
controllers on the platform



What Makes a Problem Complex

In general, many things:
Scale
Different types of decisions
Poor bounds/propagation…

...But for these problems, it’s mostly a modeling issue

How do we model:
The link between traffic light location and traffic figures?
Between incentives and renewables adoption?
Between job placement and temperature/efficiency?

Empirical Model Learning is an attempt to address this difficulties



Motivation

A possible solution:
Use Machine Learning to get a model

Let it interact in some way with the optimization component



we can have a combinatorial problem solver
passing the solution to a ML model that evaluates it

Combinatorial 
Optimization 
component

solution

Machine learning 
model

evaluation

Can be expensive to 
train but after training it 
is very efficient to use

Surrogate models: [Henao, Maravelias, AIChE 2011], [Cozad, Sahinidis, Miller, 2014] 

Light integration



Combinatorial 
Optimization 
component

solution

Machine learning 
model

evaluation

Can be expensive to 
train but after training it 
is very efficient to use

Generate and test mechanism

we can have a combinatorial problem solver
passing the solution to a ML model that evaluates it

Light integration



Alternative

A possible solution:
Use Machine Learning to get a model

Embed the learnt model into an optimization approach

This is Empirical (Decision) Model Learning



Empirical Model Learning – EML

• The ML model is embedded into the optimization component
• It actively reduces the search space during execution

ML Model
Core 

Combinatorial 
Structure

Tight integration



Empirical Model Learning – EML

• The ML model is embedded into the optimization component
• It actively reduces the search space during execution

ML Model
Core 

Combinatorial 
Structure

Tight integration

Not limited to objective functions, 
but also constraints and any relation 
between decisions and observables

Lombardi, Milano, Bartolini, Empirical
Decision Model Learning, AIJ (244), 2017



What is the difference between EML and the traditional use of 
ML models?

Traditional approaches work forward

Workload
dispatching

Core 
temperaturesML model

Tight integration



ML model

EML works forward and backward

Workload
dispatching

Core 
temperatures

The ML model becomes a constraint: given temperature 
limits we remove combinations of workload decisions that
lead to inconsistent temperatures

What is the difference between EML and the traditional use of 
ML models?

Tight integration



In practice……



Empirical (Decision) Model Learning

• Start from observations

Avg. 
Load 0

Std. 
Load 0

Avg. 
Load 1

Std. 
Load 1 …

0.9 0.1 0.7 0.3 …

0.8 0.2 0.8 0.1 …

0.5 0.4 0.6 0.2 …

… … … … …

Core 0 Core 1 Core 2 …

0.9 0.7 0.8 …

0.7 0.9 0.9 …

0.8 0.6 0.8 …

… … … …



Empirical (Decision) Model Learning

• Start from observations
• Use Machine Learning to get an approximate model



Empirical (Decision) Model Learning

• Start from observations
• Use Machine Learning to get an approximate model
• Embed this “empirical model” in a declarative optimization model

• x = ML model input
• y = ML model output



Empirical (Decision) Model Learning

In a nutshell:

ML Model
Core 

Combinatorial 
Structure

EML = combinatorial problem + ML model

Main advantages:
• Can deal with complex systems
• Support for complete search
• Declarative model
• Still benefits from bounding, propagation, conflict learning...



Embedding ML Models

The key step is “embedding” ML models 
in declarative optimization



Neural Networks

In a nutshell:



Neural Networks in CP
In a nutshell:

One possibility in CP: a global 
constraint per neuron

In a nutshell:
• ub(y) changes ↔ ub(z) changes
• lb(y) changes ↔ lb(z) changes



Neural Networks in CP

One possibility in CP: a global constraint per neuron

neuron_cst([X], Y, [W], b)

Output variable

Weights Bias

Input variables



Neural Networks in CP
In a nutshell:

One possibility in CP: a global 
constraint per neuron

In a nutshell:
• ub(y) changes ↔ ub(z) changes
• lb(y) changes ↔ lb(z) changes

Main drawback: local 
reasoning often results 

in weak bounds

M. Lombardi, S. Gualandi: A lagrangian propagator 
for artificial neural networks in CP. Constraints 2016



Decision Trees

Some experimental results
• Input: a vector of attribute values
• Output: a class/a number

Bonfietti, Lombardi, Milano: Embedding Decision Trees 
and Random Forests in CP, CPAIOR 2011



Decision Trees in CP

How do we embed a DT in CP?

A decision variable for each attribute
A ∈ {-inf, inf}
B ∈ {-inf, inf}
C ∈ {0, 1}

A decision variable for the class

Y ∈ {0, 1}

This is the tricky part

Enforce consistency on:

Y = DT(A,B,C)



Decision Trees in CP

A first, simple, encoding:

A path is an implication:

[𝐴𝐴 > 20] ⋀ [𝐶𝐶 = 0] ⋀ [𝐵𝐵 > 20] ⇒ [𝑌𝑌 = 1]



Decision Trees in CP

A second, stronger, encoding:

A:
B:

AD = 0 AD = 1 AD = 2

BD = 0 BD = 1 BD = 2

10 20

10 20

Step 2: all splits become over finite 
domain variables



Decision Trees in CP

A second, stronger, encoding:

A:
B:

AD = 0 AD = 1 AD = 2

BD = 0 BD = 1 BD = 2

10 20

10 20

Step 3: a path is a set of feasible 
assignments

Table constraint!
Bessiere, Regin, IJCAI 97



Decision Trees in CP

Some experimental results (including other encodings)



Decision Trees in SMT

In SAT Modulo Theories:
• Same encodings as in CP
• ...Except for those based on the TABLE cst
• But we have conflict learning

Some experimental results



Related Approaches

EML is strongly related to several other fields/techniques
Black-box optimization (with surrogate models)
System identification
Local search/GAs + actual simulation

Some resources: http://emlopt.github.io
1. Papers
2. Running survey
3. EMLlib embedding techniques
4. Pre- and post- processing methods
5. I/O support (in particular readers for popular ML libraries)
6. Tutorial with an hands-on example

–



EML Applications



EML Applications

• EML has been used in different and diverse contexts

• Some success stories:
• Thermal Control in System-on-Chips processors 
• Transprecision Computing 
• Epidemiological models 
• Hardware dimensioning and calibration of anticipatory algorithms 
• Verification & Adversarial examples

Katz, Guy, et al. "Reluplex: An efficient SMT solver for verifying deep neural 
networks." Int. Conf. on Computer Aided Verification, 2017.



Thermal Aware Job Allocation

Many-core CPU (Intel SCC, 2009, 48 cores, Xeon Phi precursor)
Dispatch jobs
Load balancing constraints
Objective: avoid thermal hot-spots (efficiency loss)



Thermal Aware Job Allocation

The temperature/efficiency of a core is affected by:

the room temperature
the workload of each core
the neighbor workload
the heat sink positions…

A simulator is viable, but
not so a declarative model

Sometimes, you don’t even have a simulator
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Thermal Aware Job Allocation

The simulated core efficiencies

Optimal solution with a linear model 60s LNS with CP (csts on single neurons)



EML - Transprecision Computing
• Transprecision computing is a paradigm to control approximation in space 

and time at a fine grain
• E.g. programs are written using standard FP formats 

• C/C++ programs → float and double variables
• Precision tuning → transforming programs by changing default FP types to introduce 

smaller ones
• We have a benchmark with N variables

• To each variable we can assign a number of bits
• Different configurations lead to different errors
• We want to minimize the number of bits assigned to each variable while respecting a 

constraint on the error
• Optimization Problem

• We can model this problem as a MP (Mathematical Programming) 
problem



EML - Transprecision Computing

• Problem: ideally we would like to know the relationship between a bit 
configuration and the error

• BUT this relationship is complex and not known, nor analytically 
expressible

• Idea: Apply Machine Learning techniques to learn the relationship

Objective:
min (sum(B))

Constraints (simplified):
ML_R(B) <= E_target
ML_C(B) != (large_error)

The predicted error for the bit 
config must be smaller than the 

target

The error associated to the bit 
config must be small (redundant 

constraint to increase robustness)



EML - Transprecision Computing

• Embed the learned 
relationships as a set of 
linear and non-linear 
constraints

• What happens if the 
ML model prediction is 
not accurate?
• Refine the model

and search for a new 
solution (similar to 
Active Learning)

ML_C ML_R

MP

EML

min (sum(B))

ML_R(B) <= E_target
ML_C(B) != (large_error)

s.t.
E_target

New Configuration

Satisfy Target?STOP REFINE
noyes

Data Set
Initial, small dataset 

1. Add <new_config, 
corresponding_error> 
to Data Set

2. Refine ML_R & ML_C
3. Cut <new_config> 

from MP

Solve again (refined) MP and 
search new solution

B s.t. domain-derived constraints



Approximation of the function describing the relation precision-accuracy 
through domain knowledge injection in deep neural network

1. Feature Addition – create new features in the training set based on the 
domain knowledge available

2. Ad-hoc Network Topology – the relation between the variable ca 
encoded through graphs/networks

3. Regularization function and Data augmentation – enforce properties 
(constraints) during the training

Improve the model



EML - HW dimensioning

•Problem: Given an AI algorithm or an AI tool, which is the best hardware 
configuration to satisfy time/QoS/cost constraints

•Idea: apply Machine Learning techniques to learn the relationship between 
hardware configuration parameters and algorithm performances (i.e., runtime, 
memory usage, solution quality)

• Then embed ML models inside an optimization model that allows to 
impose also user requirements hardware constraints



EML - HW dimensioning & configuration of anticipatory algs.

• The optimization model takes as input:
• user-defined constraints and an objective 

goal (e.g., minimizing the alg. runtime)
• a new and unseen instance description
• dataset to train three ML regression 

models, each one predicts a specific target:
– the time required by the online algorithm to 

find a solution (MLtime);
– the amount of memory (MLmem);
– the solution quality, expressed in terms of 

its cost (MLcost)

• It produces as output:
• the optimal matching among algorithm 

configuration, hardware resources and 
time/solution trade-off



EML Epidemiological Models

• Development of a Decision Support System to predict the spreading of a
virus and prescribe Intervention Plans to minimize both infected cases and 
socio-economic side effects

• XPrize Pandemic Response Challenge for COVID19

• Predictive Model: 
• LSTM
• Compartimental Models (e.g. SIR) + ANN

• Combinatorial Model specifying and objective and constraints w.r.t. the 
problem

F.Baldo,  M.Iannello, M.Lombardi, M.MIlano:
Informed Deep Learning for Epidemics Forecasting. PAIS@ECAI 2022:

https://dblp.org/db/conf/ecai/pais2022.html#BaldoI0M22


EML Epidemiological Models

Predictive Model

Dataset

EML

Optimization Model

Surrogate 
Model

Prescriptive System

Standard 
Predictor

Objective Function

Internal Representation
Predictor

Additional Constraints
+ Intervention Plan

Interventions Cost + Historical 
Intervention Plan

+



Open Issues, Open Directions



Weakening Relaxation and Large Models

The devil is in the details

True ReLU Linear Relaxation

There is a trade-off:
Poor bounds = poor relaxation
Good bounds = expensive pre-processing



Weakening Relaxation and Large Models

The bottom line is that dealing with large ML models is hard
In the case of Neural Networks:
• Relaxations become exponentially weaker with depth
• Individual fully connected layers have dense coefficient matrix (hard for MILP)
• Some interesting progress in https://arxiv.org/pdf/2101.12708.pdf, but still unsolved
• Currently: strong bound tightening + MILP is still the best approach

In the case of Decision Trees:
• Individual trees may grow very large (many variables, many constraints)
• Relaxations for ensemble get weaker with the number of estimators
• Some progress on the OR side in V. V. Misic. Optimization of Tree Ensembles. ´

Operations Research, 2020

https://arxiv.org/pdf/2101.12708.pdf


Accuracy vs Optimizability

In EML, higher accuracy is not always better!

Complex ML Models Simple ML Models

More accurate

Run-time overhead

Weaker inference (bounds, etc.)

Less accurate

Quicker to evaluate

More effective inference
Risk: poor optimization Risk: deceptively good solution

There is a trade off between model accuracy (variance) and optimization effectiveness
• How to characterize it?
• How to pick a model architecture?



Weak Spots in the ML Model

Say we have a training set that looks like this:



Weak Spots in the ML Model

The ML model provides a prediction for each input value



Weak Spots in the ML Model

If (e.g.) the predicted value is the cost, the solver will seek to minimize it



Weak Spots in the ML Model

If the solution if far from known points, there may be a large error



Weak Spots in the ML Model

What can be done?
When building the training set

Factorial design, Latin hypercube sampling…
At search time:

Active learning, if you can run experiments
Connection with preference elicitation and black box optimization



BB Optimization and Active Learning

EML for Black-box optimization
• Conventional BB optimization approach rely on kernel-based approximation
• Their complexity grows with each sample
• In principle EML can do the same with a fixed size model, but:
• ...How to measure uncertainty on the unexplored areas?
• ...How to ensure meaningful ML model changes with each new sample?
• Some progress in https://arxiv.org/abs/2003.04774, but still very open

https://arxiv.org/abs/2003.04774


Formally Dealing with Uncertainty

ML Model are approximate
...But the level of approximation is quantifiable
• More than can be said for many expert-designed models
• Even more: probabilistic elements can be made part of the ML model

• E.g. structured output representing the parameters of a known distribution
• E.g. density estimators

• We could take advantage of this when doing optimization
• Possible applications: chance constraints without the usual additional complexity



Formally Dealing with Uncertainty

ML Model are approximate
...But the level of approximation is quantifiable
• E.g. probabilities in NN classifiers or Decision trees
• More than can be said for many expert-designed models
• Even more: probabilistic elements can be made part of the ML model

• E.g. structured output representing the parameters of a known distribution
• E.g. density estimators

• We could take advantage of this when doing optimization
• Possible applications: chance constraints without the usual additional complexity



Composition of Optimizers

EML can enable optimization over complex systems

This includes controlled systems

• The ML model can learn the behavior of both the system and the optimizer
• An early, simple, example in: Bartolini, et. al.: Optimization and Controlled Systems: A 

Case Study on Thermal Aware Workload Dispatching. AAAI 2012

EML can be used to build hierarchies of optimizers
• We get integration without a feedback loop
• Trick: information exchange occurs at training time
• In principle: dramatically more scalable



www.unibo.it

Thanks!



1. Feature Addition

• Additional features to characterize the precision 
configurations

• E.g, if x4 → x1, granting a larger number of bits to 
represent x4 would be pointless since the final precision is 
governed by the precision of the result variable x1

▪ Less truncation and approximation, therefore a reduced 
error associated with the configuration

▪ In practice, configurations where x4 ≤ x1 are associated with smaller 
errors

• This information can be added to the training set as a 
collection of additional features
▪ If xj → xi we can create a new feature Fi,j = xj – xi
▪ Fi,j is added to the dataset
▪ Each feature corresponds to one of the logic binary constraints used 

to express the domain knowledge



2. Ad-hoc Network Topology

• Supervised regression problem whose prior information can be 
expressed through a graph dependency graph 

• We used a spectral graph convolution neural network, 
implemented via Graph Convolutional Layers (GCL)
▪ The input is defined merging the adjacency matrix representing the graph of 

dependencies and the feature matrix
▪ The GCL output is passed to a series of dense layers with decreasing width

GCL

GCL

Adjacency 
Matrix

Computational Error

Feature Matrix



3. Regularization & Data augmentation

• We can enforce a monotonicity constraint through a 
regularization approach

• The loss function is revised adding a penalty term:

where assume xj≻ xi, and λ weight for the regularization term

• Optimize the multipliers of the regularization term 
[Fioretto et al., Lagrangian Duality for Constraint Deep 
Learning, ECML PKKD 2020]

• We can create new observations for the regularization term 
exploiting the dominance relation between configurations – Data 
augmentation
▪ Given an instance of the training set, we can easily create a configuration which 

have higher or lower levels of precision
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