Learning planning representations as a combinatorial optimization problem

Andrés Occhipinti Liberman

Universitat Pompeu Fabra (Barcelona, Spain)

- A classical definition of planning
- Action model learning (AML), vs. learning policies, sketches, etc.
- Intuitive idea of AML

- A classical definition of planning
- Action model learning (AML), vs. learning policies, sketches, etc.
- Intuitive idea of AML
- 2 Symbolic planning representations: STRIPS/PDDL
 - Motivation & examples

- A classical definition of planning
- Action model learning (AML), vs. learning policies, sketches, etc.
- Intuitive idea of AML
- 2 Symbolic planning representations: STRIPS/PDDL
 - Motivation & examples
- 3 AML: brief overview of existing approaches

- A classical definition of planning
- Action model learning (AML), vs. learning policies, sketches, etc.
- Intuitive idea of AML
- 2 Symbolic planning representations: STRIPS/PDDL
 - Motivation & examples
- 3 AML: brief overview of existing approaches
- 4 Some of our work
 - Learning simultaneously a state representation + action dynamics
 - AML as a combinatorial optimization problem

1. Planning & learning planning representations learning planning representations

• Planning problem: given an **initial state** *s*₀, and a **goal** *g*, is there some **action sequence** (*a*₀,...,*a*_t) that can take me from *s*₀ to a state *s*_g which satisfies *g*?

- Planning problem: given an **initial state** s_0 , and a **goal** g, is there some **action sequence** (a_0, \ldots, a_t) that can take me from s_0 to a state s_g which satisfies g?
- Examples: navigating from point A to point B, making dinner...

- Planning problem: given an **initial state** *s*₀, and a **goal** *g*, is there some **action sequence** (*a*₀,...,*a*_t) that can take me from *s*₀ to a state *s*_g which satisfies *g*?
- Examples: navigating from point A to point B, making dinner...
- Model-based: uses a model of how the world changes in response to actions.

- Planning problem: given an **initial state** *s*₀, and a **goal** *g*, is there some **action sequence** (*a*₀,...,*a*_t) that can take me from *s*₀ to a state *s*_g which satisfies *g*?
- Examples: navigating from point A to point B, making dinner...
- Model-based: uses a model of how the world changes in response to actions.
- Model specifies **action preconditions** (when is action *a* applicable?) and **action effects** (how does state *s* change if I take action *a*?)

- Planning problem: given an **initial state** *s*₀, and a **goal** *g*, is there some **action sequence** (*a*₀,...,*a*_t) that can take me from *s*₀ to a state *s*_g which satisfies *g*?
- Examples: navigating from point A to point B, making dinner...
- Model-based: uses a model of how the world changes in response to actions.
- Model specifies **action preconditions** (when is action *a* applicable?) and **action effects** (how does state *s* change if I take action *a*?)
- Planning is **simulation**: simulate state trajectories induced by action sequences before acting in the real world

High-level planning vs low-level control

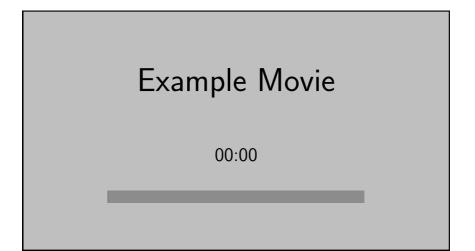
- In this seminar: planning = **high-level** planning
- Example:
 - Planning goal: robot make eggs for breakfast.
 - **Possible plan**: go to fridge, grab eggs from fridge, put eggs on table, brush pan with olive oil, crack eggs...
- High-level plan will need to be mapped to the robot's low-level sensorimotor space (low-level sensing and control)

High-level planning vs low-level control

- In this seminar: planning = **high-level** planning
- Example:
 - Planning goal: robot make eggs for breakfast.
 - **Possible plan**: go to fridge, grab eggs from fridge, put eggs on table, brush pan with olive oil, crack eggs...
- High-level plan will need to be mapped to the robot's low-level sensorimotor space (low-level sensing and control)
- Assumptions high-level planning problems:
 - Finite, discrete state-space
 - Interaction in discrete time-steps
 - Actions are deterministic

Action model learning: intuitive idea

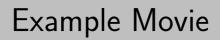
- Humans aren't born with internal representations of the world.
- Starting from a young age, they learn them via exploration.
- Children form hypotheses about how actions works, and engage in exploration to test and refine them [5, 4]. Then use them for planning.



Action model learning: intuitive idea

- Humans aren't born with internal representations of the world.
- Starting from a young age, they learn them via exploration.
- Children form hypotheses about how actions works, and engage in exploration to test and refine them [5, 4]. Then use them for planning.

A sophisticated action model learner :)



00:00

• Similarly, an artificial agent may have no internal model for planning.

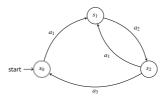
- Similarly, an artificial agent may have no internal model for planning.
- Action model learning: problem of learning action representations from data, gathered by taking actions and observing their results.

- Similarly, an artificial agent may have no internal model for planning.
- Action model learning: problem of learning action representations from data, gathered by taking actions and observing their results.
- Action representations should be **general**: model of action generalizes to unseen scenarios

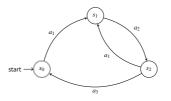
2. Symbolic planning representations: STRIPS/PDDL

• A necessary input to any planning algorithm is a **description** of the problem to be solved: **states**, **actions**, **goals**

- A necessary input to any planning algorithm is a **description** of the problem to be solved: **states**, **actions**, **goals**
- Simplest representation: state-space graph

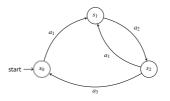


- A necessary input to any planning algorithm is a **description** of the problem to be solved: **states**, **actions**, **goals**
- Simplest representation: state-space graph



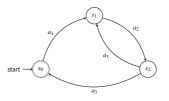
• In practice, explicit enumeration of possible states and state transitions impossible (typically, #states exponential in #objects)

- A necessary input to any planning algorithm is a **description** of the problem to be solved: **states**, **actions**, **goals**
- Simplest representation: state-space graph



- In practice, explicit enumeration of possible states and state transitions impossible (typically, #states exponential in #objects)
- Representation not general (each graph tied to a specific instance)

- A necessary input to any planning algorithm is a **description** of the problem to be solved: **states**, **actions**, **goals**
- Simplest representation: state-space graph



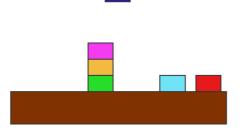
- In practice, explicit enumeration of possible states and state transitions impossible (typically, #states exponential in #objects)
- Representation not general (each graph tied to a specific instance)
- **Compact & general representation** is needed (avoid enumeration, makes it easy to compute transitions on-the-fly).

Compact & general representations

- Some "compact" action representations:
- Neural network $f^a_{\theta}(s) = s'$.
 - Action representation implicit in network parameters heta
 - Learned from data
 - Hard to interpret
- PDDL/STRIPS action schemas:
 - Explicit representation $a(x_1, ..., x_n) = (pre(a), eff(a))$: use declarative/logical language to define action preconditions and effects.
 - Typically hand-coded
 - Easy to interpret

PDDL by example: Blocksworld

State representation:



objects and types block(b-pink). block(b-yellow). robot(r). table(t).

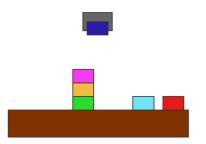
relations
clear(b-pink).
on(b-pink,b-yellow).
holding(b-blue).

. . .

. . .

PDDL by example: Blocksworld

Action representation:



```
stack block x on top of block y
(:action stack
      :parameters (?x ?y)
      :precondition (and
          holding(?x)
          clear(?y))
      :effect (and
          (not holding (?x))
          (not clear(?y))
          clear(?x)
          (handempty)
          on(?x,?y))
```

Planning domains & problems

• Given action schema $a(x_1,...,x_n)$ and objects $\overline{o} = (o_1,...,o_n)$, the *instantiation* of the schema with \overline{o} is the concrete action $a(o_1,...,o_n)$.

Planning domains & problems

- Given action schema a(x₁,...,x_n) and objects o
 ¯ = (o₁,...,o_n), the *instantiation* of the schema with *¯* is the concrete action a(o₁,...,o_n).
- A planning domain D = (L,A) is a pair where:
 - L is a set of *predicates* for describing states
 - A is a set of action schemas

Planning domains & problems

- Given action schema a(x₁,...,x_n) and objects o
 ¯ = (o₁,...,o_n), the *instantiation* of the schema with *¯* is the concrete action a(o₁,...,o_n).
- A **planning domain** D = (L,A) is a pair where:
 - L is a set of *predicates* for describing states
 - A is a set of action schemas
- A planning problem P = (D, I) is given by a planning domain D = (L, A), and instance information $I = (O, s_0, g)$, where:
 - O is a set of objects
 - s_0 is an initial state
 - g is a goal
- Planning problem P = (D, I) induces a labelled **planning graph** G(P) where the nodes correspond to states and each edge (s, s') is labelled by action $\alpha = a(o_1, \dots, o_n)$ if α is executable in *s* and leads to *s'*.

Pros and cons of PDDL (and of symbolic repr. in general)

Pros:

- General representation; size of action schemas constant across instances.
- Human-readable

Pros and cons of PDDL (and of symbolic repr. in general)

Pros:

- General representation; size of action schemas constant across instances.
- Human-readable

Cons:

- Typically hand-coded: error-prone, time-consuming task
- "Knowledge acquisition bottleneck": the excessive cost of human involvement in converting real-world problems into inputs for symbolic AI systems

Pros and cons of PDDL (and of symbolic repr. in general)

Pros:

- General representation; size of action schemas constant across instances.
- Human-readable

Cons:

- Typically hand-coded: error-prone, time-consuming task
- "Knowledge acquisition bottleneck": the excessive cost of human involvement in converting real-world problems into inputs for symbolic AI systems

Way out? AML

3. AML: brief overview of existing approaches

AML: basic case

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

2 Planning graphs $G(P_1), \ldots, G(P_1)$

AML: basic case

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

2 Planning graphs $G(P_1), \ldots, G(P_1)$

Find: action schemas \hat{A} defined with language L

AML: basic case

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

2 Planning graphs $G(P_1), \ldots, G(P_1)$

Find: action schemas \hat{A} defined with language L

s.t.: for *any* problem $P = ((L,A), (O, s_0, g))$ over D:

AML: beyond the basic case (1), incomplete graphs

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

2 Planning graphs execution traces over $G(P_1), \ldots, G(P_1)$:

$$s_0, a_0(o_1, \ldots, o_n), s_1, a_1(o'_1, \ldots, o'_n), \ldots$$

Find: action schemas \hat{A} defined with language L

s.t.: for any problem $P = ((L,A), (O, s_0, g))$ over D:

AML: beyond the basic case (2), partial state observability

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

Planning graphs partially observed execution traces:

 $obs(s_0), a(o_1, \ldots, o_n), obs(s_1), a_1(o'_1, \ldots, o'_n), \ldots$

Find: action schemas \hat{A} defined with language L

s.t.: for any problem $P = ((L,A), (O, s_0, g))$ over D:

AML: beyond the basic case (3), no state observability

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

2 Planning graphs possible action sequences:

obs (s_0) , $a_0(o_1, \ldots, o_n)$, **obs** (s_1) , $a_1(o'_1, \ldots, o'_n)$, ...

Find: action schemas \hat{A} defined with language L

s.t.: for *any* problem $P = ((L,A), (O,s_0,g))$ over D:

AML: beyond the basic case (4), no state observability, no action parameters, no language

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \ldots, P_n)$ be problems over D.

Given:

1 The language L

AML: beyond the basic case (4), no state observability, no action parameters, no language

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

2 Planning graphs execution traces over $G(P_1), \ldots, G(P_n)$:

 $id(s_0), a_0(o_1,\ldots,o_n),$

AML: beyond the basic case (4), no state observability, no action parameters, no language

Let D = (L,A) be an unknown domain, and let $P_1 = (P_1, \dots, P_n)$ be problems over D.

Given:

1 The language L

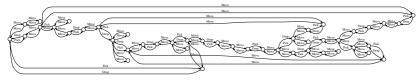
2 Planning graphs execution traces over $G(P_1), \ldots, G(P_n)$:

 $id(s_0), a_0(o_1,...,o_n), id(s_1), a_1(o'_1,...,o'_n),...$

Find: language \hat{L} and action schemas \hat{A}

s.t.: for *any* problem $P = ((L,A), (O,s_0,g))$ over D:

Input: State graph G of agent in 1×3 grid, moving/picking/dropping 2 pkgs



Output: Simplest domain D = (L, A) that generates G:

Interpretation of learned predicates:

- 1 p1: gripper empty
- **2** $p_2(x)$: agent at cell x,
- **3** $p_3(p)$: agent holds pkg p,
- 4 $p_4(p,x)$: pkg p in cell x
- **5** $p_5(x,y)$: cell x adj to y

• Domain *D* correct for **any** grid, **any** # of packages. Structure of nodes uncovered.

• Learn **simultaneously** state representation language L and domain dynamics A.

- Learn **simultaneously** state representation language L and domain dynamics A.
- From topology of graph alone (can also accommodate partial graphs)

- Learn **simultaneously** state representation language L and domain dynamics A.
- From topology of graph alone (can also accommodate partial graphs)
- Casted as a combinatorial optimization problem:
 - Given: graph G
 - Find: domain D = (L,A)
 - S.t.: *D* induces graph isomorphic to *G*
 - Minimize:
 - 1 Sum of action schema parameters (prefer simpler actions)
 - 2 Sum of predicates arities (prefer simpler state repr.)
 - 3 Number of action effects
 - 4 Number of preconditions

- Learn **simultaneously** state representation language L and domain dynamics A.
- From topology of graph alone (can also accommodate partial graphs)
- Casted as a combinatorial optimization problem:
 - Given: graph G
 - Find: domain D = (L,A)
 - S.t.: *D* induces graph isomorphic to *G*
 - Minimize:
 - 1 Sum of action schema parameters (prefer simpler actions)
 - 2 Sum of predicates arities (prefer simpler state repr.)
 - 3 Number of action effects
 - 4 Number of preconditions
- Solved using Answer Set Programming (CLINGO solver)
- Learns solutions that generalize for several standard planning domains

Limitations:

- Input minimal and search relatively unconstrained; limits scalability to more complex domains
- Learned predicates are **ungrounded**; symbol grounding needs to be done manually

Interpretation of learned predicates:

- 1 p1: gripper empty
- **2** $p_2(x)$: agent at cell x,
- **3** $p_3(p)$: agent holds pkg p,
- 4 $p_4(p,x)$: pkg p in cell x
- **5** *p*₅(*x*, *y*): cell *x* adj to *y*

Learning representations that are grounded [2]

Overcoming limitations:

• Augment input with information about states expressed in a simple **domain-independent** language

Learning representations that are grounded [2]

Overcoming limitations:

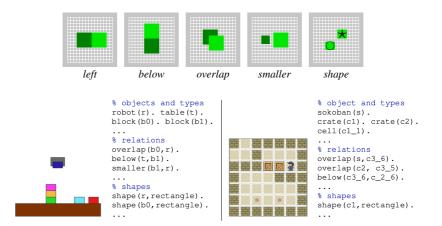
- Augment input with information about states expressed in a simple **domain-independent** language
- O2D: simple language that captures basic **spatial relations** amongst objects

Learning representations that are grounded [2]

Overcoming limitations:

- Augment input with information about states expressed in a simple **domain-independent** language
- O2D: simple language that captures basic spatial relations amongst objects
- Learned predicates correspond to logical conditions over O2D language: i.e., learned symbols are **grounded** over spatial information

Visual language for states: O2D language



States represented as **objects**, their **types**, and 5 qualitative, fixed **spatial relations**. **Grounded predicate**: derived from O2D language. Example: $clear(pink_block) := \neg \exists x(below(pink_block, x) \land block(x))$

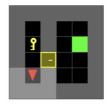
O2D & grounded predicates

- Pool of grounded predicates obtained from primitive O2D predicates using a (description logic) grammar.
- **2** The actual **description logic grammar** used is given by:

$$C \leftarrow U \mid \top \mid \bot \mid \exists R.C \mid C \sqcap C' \mid C \sqsubseteq C'$$
$$R \leftarrow R \mid R^{-1} \mid R \circ R'$$

- Where U and R are primitive O2D unary and binary predicates, respectively.
- Nullary predicates *C* ⊆ *C*′ are true iff the denotation of *C* is a subset of the denotation of *C*′.
- Sinite pool generated by constructing all predicates up to a given grammar complexity, pruning syntactic variants

Experimental results: some models learned



```
[Grid] Pickup(p,k):
pre: armempty, at(\mathbf{R}, p), at(p, k)
eff: \neg armempty, \neg somecell(k), \neg at(p,k), \neg at(k,p)
groundings:
armempty := SUBSET[key, ER[overlap, Top]]
somecell := INTER[key,ER[overlap,Top]]
at := overlap
[Sokoban] Pushdown(x, y, z, c):
static: below(z, y), below(y, x)
pre: at(Sok, x), at(c, y), \neg nempty(z)
eff: \neg nempty(x), nempty(z), at(Sok, y), at(y, Sok), \neg at(Sok, x)
        \neg at(x, Sok), \neg at(y, c), \neg at(c, y), at(c, z), at(z, c)
```

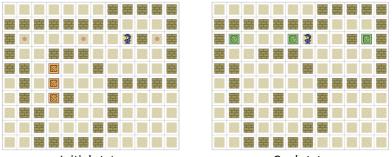
Experimental results for some domains: input data

						Predicate pool ${\mathscr P}$		
Domain (#inst.)	#obj.	#const.	A	S	#edges	$ \mathscr{P} $	compl	time
Blocksworld (5)	5	2	4	1,020	2,414	79	4	9.13
Towers of Hanoi (5)	8	1	4	363	1,074	14	2	2.03
Sliding Tile (7)	11	1	4	742	1,716	16	2	0.96
IPC Grid (19)	11	1	10	9,368	23,530	164	4	316.64
Sokoban1 (95)	22	3	8	1,936	5,042	18	2	8.54
Sokoban2 (24)	27	3	8	12,056	36,482	18	2	160.48

Experimental results for some domains: learning stats

				Learning time in seconds			
Domain	#iter	#inst.	#states	solve	ground	verif.	total
Blocksworld	7	3	16	0.29	23.37	29.42	53.70
Towers of Hanoi	6	4	27	1.56	12.67	0.59	15.06
Sliding Tile	6	5	10	0.11	2.89	1.20	4.43
IPC Grid	27	12	127	693.44	3,536.23	2,404.87	6,653,03
Sokoban1	10	9	13	16.18	285.56	9.18	311.79
Sokoban2	11	8	56	7,250.67	5,314.35	165.19	12,740.43

Experimental results: planning with the learned models



Initial state

Goal state

Figure: Sokoban instance. Optimal plans of length 156 are found using the original "hidden" domain and the learned grounded domain.

• AML can be casted as a **combinatorial optimization problem**: find simplest planning domain given data

- AML can be casted as a **combinatorial optimization problem**: find simplest planning domain given data
- State representation language and action dynamics can be learned simultaneously. Meaning of learned symbols can be ground in simple, domain-independent language capturing visual relationships

- AML can be casted as a **combinatorial optimization problem**: find simplest planning domain given data
- State representation language and action dynamics can be learned simultaneously. Meaning of learned symbols can be ground in simple, domain-independent language capturing visual relationships
- Learned representations are interpretable and general

- AML can be casted as a **combinatorial optimization problem**: find simplest planning domain given data
- State representation language and action dynamics can be learned simultaneously. Meaning of learned symbols can be ground in simple, domain-independent language capturing visual relationships
- Learned representations are interpretable and general
- Future work: obtain visual description directly from images; learn action representations with deep learning.

Thank you!

- [1] B. Bonet and H. Geffner. "Learning first-order symbolic representations for planning from the structure of the state space". In: *Proc. ECAI*. 2020.
- [2] Andres Occhipinti Liberman, Blai Bonet, and Hector Geffner. "Learning First-Order Symbolic Planning Representations That Are Grounded". In: *3rd ICAPS workshop on Bridging the Gap Between AI Planning and Reinforcement Learning* (2022).
- [3] I. D. Rodriguez et al. "Learning First-Order Representations for Planning from Black-Box States: New Results". In: *KR*. arXiv preprint arXiv:2105.10830. 2021.
- [4] Laura Schulz and Elizabeth Bonawitz. "Serious Fun: Preschoolers Engage in More Exploratory Play When Evidence Is Confounded". In: *Developmental psychology* 43 (Aug. 2007), pp. 1045–50.
- [5] Aimee E. Stahl and Lisa Feigenson. "Observing the unexpected enhances infants' learning and exploration". In: Science 348.6230 (2015), pp. 91–94. DOI: 10.1126/science.aaa3799.