
Learning planning representations as a combinatorial

optimization problem

Andrés Occhipinti Liberman

Universitat Pompeu Fabra (Barcelona, Spain)

Plan for the seminar

1 Planning & learning planning representations
• A classical definition of planning
• Action model learning (AML), vs. learning policies, sketches, etc.
• Intuitive idea of AML

2 Symbolic planning representations: STRIPS/PDDL
• Motivation & examples

3 AML: brief overview of existing approaches

4 Some of our work
• Learning simultaneously a state representation + action dynamics
• AML as a combinatorial optimization problem

Plan for the seminar

1 Planning & learning planning representations
• A classical definition of planning
• Action model learning (AML), vs. learning policies, sketches, etc.
• Intuitive idea of AML

2 Symbolic planning representations: STRIPS/PDDL
• Motivation & examples

3 AML: brief overview of existing approaches

4 Some of our work
• Learning simultaneously a state representation + action dynamics
• AML as a combinatorial optimization problem

Plan for the seminar

1 Planning & learning planning representations
• A classical definition of planning
• Action model learning (AML), vs. learning policies, sketches, etc.
• Intuitive idea of AML

2 Symbolic planning representations: STRIPS/PDDL
• Motivation & examples

3 AML: brief overview of existing approaches

4 Some of our work
• Learning simultaneously a state representation + action dynamics
• AML as a combinatorial optimization problem

Plan for the seminar

1 Planning & learning planning representations
• A classical definition of planning
• Action model learning (AML), vs. learning policies, sketches, etc.
• Intuitive idea of AML

2 Symbolic planning representations: STRIPS/PDDL
• Motivation & examples

3 AML: brief overview of existing approaches

4 Some of our work
• Learning simultaneously a state representation + action dynamics
• AML as a combinatorial optimization problem

1. Planning & learning planning representations learning
planning representations

Planning

• Planning problem: given an initial state s0, and a goal g, is there some action
sequence (a0, . . . ,at) that can take me from s0 to a state sg which satisfies g?

• Examples: navigating from point A to point B, making dinner...

• Model-based: uses a model of how the world changes in response to actions.

• Model specifies action preconditions (when is action a applicable?) and action
effects (how does state s change if I take action a?)

• Planning is simulation: simulate state trajectories induced by action sequences
before acting in the real world

Planning

• Planning problem: given an initial state s0, and a goal g, is there some action
sequence (a0, . . . ,at) that can take me from s0 to a state sg which satisfies g?

• Examples: navigating from point A to point B, making dinner...

• Model-based: uses a model of how the world changes in response to actions.

• Model specifies action preconditions (when is action a applicable?) and action
effects (how does state s change if I take action a?)

• Planning is simulation: simulate state trajectories induced by action sequences
before acting in the real world

Planning

• Planning problem: given an initial state s0, and a goal g, is there some action
sequence (a0, . . . ,at) that can take me from s0 to a state sg which satisfies g?

• Examples: navigating from point A to point B, making dinner...

• Model-based: uses a model of how the world changes in response to actions.

• Model specifies action preconditions (when is action a applicable?) and action
effects (how does state s change if I take action a?)

• Planning is simulation: simulate state trajectories induced by action sequences
before acting in the real world

Planning

• Planning problem: given an initial state s0, and a goal g, is there some action
sequence (a0, . . . ,at) that can take me from s0 to a state sg which satisfies g?

• Examples: navigating from point A to point B, making dinner...

• Model-based: uses a model of how the world changes in response to actions.

• Model specifies action preconditions (when is action a applicable?) and action
effects (how does state s change if I take action a?)

• Planning is simulation: simulate state trajectories induced by action sequences
before acting in the real world

Planning

• Planning problem: given an initial state s0, and a goal g, is there some action
sequence (a0, . . . ,at) that can take me from s0 to a state sg which satisfies g?

• Examples: navigating from point A to point B, making dinner...

• Model-based: uses a model of how the world changes in response to actions.

• Model specifies action preconditions (when is action a applicable?) and action
effects (how does state s change if I take action a?)

• Planning is simulation: simulate state trajectories induced by action sequences
before acting in the real world

High-level planning vs low-level control

• In this seminar: planning = high-level planning

• Example:
• Planning goal: robot make eggs for breakfast.
• Possible plan: go to fridge, grab eggs from fridge, put eggs on table, brush

pan with olive oil, crack eggs...

• High-level plan will need to be mapped to the robot’s low-level sensorimotor
space (low-level sensing and control)

• Assumptions high-level planning problems:
• Finite, discrete state-space
• Interaction in discrete time-steps
• Actions are deterministic

High-level planning vs low-level control

• In this seminar: planning = high-level planning

• Example:
• Planning goal: robot make eggs for breakfast.
• Possible plan: go to fridge, grab eggs from fridge, put eggs on table, brush

pan with olive oil, crack eggs...

• High-level plan will need to be mapped to the robot’s low-level sensorimotor
space (low-level sensing and control)

• Assumptions high-level planning problems:
• Finite, discrete state-space
• Interaction in discrete time-steps
• Actions are deterministic

Action model learning: intuitive idea
• Humans aren’t born with internal representations of the world.
• Starting from a young age, they learn them via exploration.
• Children form hypotheses about how actions works, and engage in exploration to

test and refine them [5, 4]. Then use them for planning.

A sophisticated action model learner :)

Action model learning: intuitive idea
• Humans aren’t born with internal representations of the world.
• Starting from a young age, they learn them via exploration.
• Children form hypotheses about how actions works, and engage in exploration to

test and refine them [5, 4]. Then use them for planning.

A sophisticated action model learner :)

• Similarly, an artificial agent may have no internal model for planning.

• Action model learning: problem of learning action representations from data,
gathered by taking actions and observing their results.

• Action representations should be general: model of action generalizes to unseen
scenarios

• Similarly, an artificial agent may have no internal model for planning.

• Action model learning: problem of learning action representations from data,
gathered by taking actions and observing their results.

• Action representations should be general: model of action generalizes to unseen
scenarios

• Similarly, an artificial agent may have no internal model for planning.

• Action model learning: problem of learning action representations from data,
gathered by taking actions and observing their results.

• Action representations should be general: model of action generalizes to unseen
scenarios

2. Symbolic planning representations: STRIPS/PDDL

Compact & general representations for planning

• A necessary input to any planning algorithm is a description of the problem to be
solved: states, actions, goals

• Simplest representation: state-space graph

s0start

s1

s2

a1
a2

a3

a1

• In practice, explicit enumeration of possible states and state transitions
impossible (typically, #states exponential in #objects)

• Representation not general (each graph tied to a specific instance)

• Compact & general representation is needed (avoid enumeration, makes it easy
to compute transitions on-the-fly).

Compact & general representations for planning

• A necessary input to any planning algorithm is a description of the problem to be
solved: states, actions, goals

• Simplest representation: state-space graph

s0start

s1

s2

a1
a2

a3

a1

• In practice, explicit enumeration of possible states and state transitions
impossible (typically, #states exponential in #objects)

• Representation not general (each graph tied to a specific instance)

• Compact & general representation is needed (avoid enumeration, makes it easy
to compute transitions on-the-fly).

Compact & general representations for planning

• A necessary input to any planning algorithm is a description of the problem to be
solved: states, actions, goals

• Simplest representation: state-space graph

s0start

s1

s2

a1
a2

a3

a1

• In practice, explicit enumeration of possible states and state transitions
impossible (typically, #states exponential in #objects)

• Representation not general (each graph tied to a specific instance)

• Compact & general representation is needed (avoid enumeration, makes it easy
to compute transitions on-the-fly).

Compact & general representations for planning

• A necessary input to any planning algorithm is a description of the problem to be
solved: states, actions, goals

• Simplest representation: state-space graph

s0start

s1

s2

a1
a2

a3

a1

• In practice, explicit enumeration of possible states and state transitions
impossible (typically, #states exponential in #objects)

• Representation not general (each graph tied to a specific instance)

• Compact & general representation is needed (avoid enumeration, makes it easy
to compute transitions on-the-fly).

Compact & general representations for planning

• A necessary input to any planning algorithm is a description of the problem to be
solved: states, actions, goals

• Simplest representation: state-space graph

s0start

s1

s2

a1
a2

a3

a1

• In practice, explicit enumeration of possible states and state transitions
impossible (typically, #states exponential in #objects)

• Representation not general (each graph tied to a specific instance)

• Compact & general representation is needed (avoid enumeration, makes it easy
to compute transitions on-the-fly).

Compact & general representations

• Some “compact” action representations:

• Neural network f a
θ
(s) = s′.

• Action representation implicit in network parameters θ

• Learned from data
• Hard to interpret

• PDDL/STRIPS action schemas:
• Explicit representation a(x1, . . . ,xn) = (pre(a),eff(a)): use

declarative/logical language to define action preconditions and effects.
• Typically hand-coded
• Easy to interpret

PDDL by example: Blocksworld

State representation:

objects and types
block(b-pink).
block(b-yellow).
robot(r).
table(t).
...
relations
clear(b-pink).
on(b-pink,b-yellow).
holding(b-blue).
...

PDDL by example: Blocksworld

Action representation:

stack block x on top of block y
(:action stack

:parameters (?x ?y)
:precondition (and

holding(?x)
clear(?y))

:effect (and
(not holding (?x))
(not clear(?y))
clear(?x)
(handempty)
on(?x,?y))

)

Planning domains & problems

• Given action schema a(x1, . . . ,xn) and objects o = (o1, . . . ,on), the instantiation of
the schema with o is the concrete action a(o1, . . . ,on).

• A planning domain D = (L,A) is a pair where:
• L is a set of predicates for describing states
• A is a set of action schemas

• A planning problem P = (D, I) is given by a planning domain D = (L,A), and
instance information I = (O,s0,g), where:
• O is a set of objects
• s0 is an initial state
• g is a goal

• Planning problem P = (D, I) induces a labelled planning graph G(P) where the
nodes correspond to states and each edge (s,s′) is labelled by action
α = a(o1, . . . ,on) if α is executable in s and leads to s′.

Planning domains & problems

• Given action schema a(x1, . . . ,xn) and objects o = (o1, . . . ,on), the instantiation of
the schema with o is the concrete action a(o1, . . . ,on).

• A planning domain D = (L,A) is a pair where:
• L is a set of predicates for describing states
• A is a set of action schemas

• A planning problem P = (D, I) is given by a planning domain D = (L,A), and
instance information I = (O,s0,g), where:
• O is a set of objects
• s0 is an initial state
• g is a goal

• Planning problem P = (D, I) induces a labelled planning graph G(P) where the
nodes correspond to states and each edge (s,s′) is labelled by action
α = a(o1, . . . ,on) if α is executable in s and leads to s′.

Planning domains & problems

• Given action schema a(x1, . . . ,xn) and objects o = (o1, . . . ,on), the instantiation of
the schema with o is the concrete action a(o1, . . . ,on).

• A planning domain D = (L,A) is a pair where:
• L is a set of predicates for describing states
• A is a set of action schemas

• A planning problem P = (D, I) is given by a planning domain D = (L,A), and
instance information I = (O,s0,g), where:
• O is a set of objects
• s0 is an initial state
• g is a goal

• Planning problem P = (D, I) induces a labelled planning graph G(P) where the
nodes correspond to states and each edge (s,s′) is labelled by action
α = a(o1, . . . ,on) if α is executable in s and leads to s′.

Pros and cons of PDDL (and of symbolic repr. in general)

Pros:
• General representation; size of action schemas constant across instances.

• Human-readable

Cons:
• Typically hand-coded: error-prone, time-consuming task

• “Knowledge acquisition bottleneck”: the excessive cost of human involvement in
converting real-world problems into inputs for symbolic AI systems

Way out? AML

Pros and cons of PDDL (and of symbolic repr. in general)

Pros:
• General representation; size of action schemas constant across instances.

• Human-readable

Cons:
• Typically hand-coded: error-prone, time-consuming task

• “Knowledge acquisition bottleneck”: the excessive cost of human involvement in
converting real-world problems into inputs for symbolic AI systems

Way out? AML

Pros and cons of PDDL (and of symbolic repr. in general)

Pros:
• General representation; size of action schemas constant across instances.

• Human-readable

Cons:
• Typically hand-coded: error-prone, time-consuming task

• “Knowledge acquisition bottleneck”: the excessive cost of human involvement in
converting real-world problems into inputs for symbolic AI systems

Way out? AML

3. AML: brief overview of existing approaches

AML: basic case

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs G(P1), . . . ,G(P1)

Find: action schemas Â defined with language L

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L, Â),(O,s0,g)) are isomorphic

AML: basic case

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs G(P1), . . . ,G(P1)

Find: action schemas Â defined with language L

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L, Â),(O,s0,g)) are isomorphic

AML: basic case

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs G(P1), . . . ,G(P1)

Find: action schemas Â defined with language L

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L, Â),(O,s0,g)) are isomorphic

AML: beyond the basic case (1), incomplete graphs

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs execution traces over G(P1), . . . ,G(P1):

s0,a0(o1, . . . ,on),s1,a1(o′1, . . . ,o
′
n), . . .

Find: action schemas Â defined with language L

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L, Â),(O,s0,g)) are isomorphic

AML: beyond the basic case (2), partial state observability

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs partially observed execution traces:

obs(s0),a(o1, . . . ,on),obs(s1),a1(o′1, . . . ,o
′
n), . . .

Find: action schemas Â defined with language L

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L, Â),(O,s0,g)) are isomorphic

AML: beyond the basic case (3), no state observability

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs possible action sequences:

obs(s0), a0(o1, . . . ,on), obs(s1),a1(o′1, . . . ,o
′
n), . . .

Find: action schemas Â defined with language L

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L, Â),(O,s0,g)) are isomorphic

AML: beyond the basic case (4), no state observability, no action
parameters, no language

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs execution traces over G(P1), . . . ,G(Pn):

id(s0), a0(o1, . . . ,on),id(s1),a1(o′1, . . . ,o
′
n),. . .

Find: language L̂ and action schemas Â

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L̂, Â),(O,s0,g)) are isomorphic

AML: beyond the basic case (4), no state observability, no action
parameters, no language

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs execution traces over G(P1), . . . ,G(Pn):

id(s0), a0(o1, . . . ,on),

id(s1),a1(o′1, . . . ,o
′
n),. . .

Find: language L̂ and action schemas Â

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L̂, Â),(O,s0,g)) are isomorphic

AML: beyond the basic case (4), no state observability, no action
parameters, no language

Let D = (L,A) be an unknown domain, and let P1 = (P1, . . . ,Pn) be problems
over D.

Given:
1 The language L

2 Planning graphs execution traces over G(P1), . . . ,G(Pn):

id(s0), a0(o1, . . . ,on),id(s1),a1(o′1, . . . ,o
′
n),. . .

Find: language L̂ and action schemas Â

s.t.: for any problem P = ((L,A),(O,s0,g)) over D:

G(P) and G((L̂, Â),(O,s0,g)) are isomorphic

Input: State graph G of agent in 1×3 grid, moving/picking/dropping 2 pkgs

Move

Pick

Pick

Move

Move

Drop Move

Drop

Move

Move

Move

Drop

Move

Move

Drop

Move

Move

Drop
Pick

Move

Move

Move Drop

Pick

Move
Move

Move

Pick
Move

Pick
Move

Move
Pick

Move
Pick

Move
Move

MoveDrop Move

Move Move
Drop

Move

MoveDrop

Move

Move

Pick

Move

Move

Drop

Move

Pick

Drop

Move

Move

Drop

Pick

Pick

Move

Move

Drop Move

Move

Drop

PickMove

Move

Drop

Move

Move

Move

Pick

Move Move

Move Drop
Move

Drop
Move

Pick Move

Pick

Move

Move

Move

Drop

Pick

Pick

Move

Move

MoveMove

Move

Move

Output: Simplest domain D = (L,A) that generates G:
Move(?to, ?from):

Pre: neq(?to, ?from), p5(?to, ?from)
Pre: p2(?from), -p2(?to)
Eff: -p2(?from), p2(?to)

Pick(?p, ?x):
Pre: p2(?x), p1 , -p3(?p), p4(?p, ?x)
Eff: -p1, p3(?p), -p4(?p, ?x)

Drop(?p, ?x):
Pre: p2(?x), -p1 , p3(?p), -p4(?p, ?x)
Eff: p1 , -p3(?p), p4(?p, ?x)

Interpretation of learned
predicates:

1 p1: gripper empty

2 p2(x): agent at cell x,

3 p3(p): agent holds pkg p,

4 p4(p,x): pkg p in cell x

5 p5(x,y): cell x adj to y

• Domain D correct for any grid, any # of packages. Structure of nodes uncovered.

Key features of this work1

• Learn simultaneously state representation language L and domain dynamics A.

• From topology of graph alone (can also accommodate partial graphs)

• Casted as a combinatorial optimization problem:
• Given: graph G
• Find: domain D = (L,A)
• S.t.: D induces graph isomorphic to G
• Minimize:

1 Sum of action schema parameters (prefer simpler actions)
2 Sum of predicates arities (prefer simpler state repr.)
3 Number of action effects
4 Number of preconditions

• Solved using Answer Set Programming (CLINGO solver)

• Learns solutions that generalize for several standard planning domains

1[1, 3]

Key features of this work1

• Learn simultaneously state representation language L and domain dynamics A.

• From topology of graph alone (can also accommodate partial graphs)

• Casted as a combinatorial optimization problem:
• Given: graph G
• Find: domain D = (L,A)
• S.t.: D induces graph isomorphic to G
• Minimize:

1 Sum of action schema parameters (prefer simpler actions)
2 Sum of predicates arities (prefer simpler state repr.)
3 Number of action effects
4 Number of preconditions

• Solved using Answer Set Programming (CLINGO solver)

• Learns solutions that generalize for several standard planning domains

1[1, 3]

Key features of this work1

• Learn simultaneously state representation language L and domain dynamics A.

• From topology of graph alone (can also accommodate partial graphs)

• Casted as a combinatorial optimization problem:
• Given: graph G
• Find: domain D = (L,A)
• S.t.: D induces graph isomorphic to G
• Minimize:

1 Sum of action schema parameters (prefer simpler actions)
2 Sum of predicates arities (prefer simpler state repr.)
3 Number of action effects
4 Number of preconditions

• Solved using Answer Set Programming (CLINGO solver)

• Learns solutions that generalize for several standard planning domains

1[1, 3]

Key features of this work1

• Learn simultaneously state representation language L and domain dynamics A.

• From topology of graph alone (can also accommodate partial graphs)

• Casted as a combinatorial optimization problem:
• Given: graph G
• Find: domain D = (L,A)
• S.t.: D induces graph isomorphic to G
• Minimize:

1 Sum of action schema parameters (prefer simpler actions)
2 Sum of predicates arities (prefer simpler state repr.)
3 Number of action effects
4 Number of preconditions

• Solved using Answer Set Programming (CLINGO solver)

• Learns solutions that generalize for several standard planning domains

1[1, 3]

Limitations:
• Input minimal and search relatively unconstrained; limits scalability to more

complex domains

• Learned predicates are ungrounded; symbol grounding needs to be done
manually

Move(?to, ?from):
Pre: neq(?to, ?from), p5(?to, ?from)
Pre: p2(?from), -p2(?to)
Eff: -p2(?from), p2(?to)

Pick(?p, ?x):
Pre: p2(?x), p1 , -p3(?p), p4(?p, ?x)
Eff: -p1, p3(?p), -p4(?p, ?x)

Drop(?p, ?x):
Pre: p2(?x), -p1 , p3(?p), -p4(?p, ?x)
Eff: p1 , -p3(?p), p4(?p, ?x)

Interpretation of learned
predicates:

1 p1: gripper empty

2 p2(x): agent at cell x,

3 p3(p): agent holds pkg p,

4 p4(p,x): pkg p in cell x

5 p5(x,y): cell x adj to y

Learning representations that are grounded [2]

Overcoming limitations:
• Augment input with information about states expressed in a simple

domain-independent language

• O2D: simple language that captures basic spatial relations amongst objects

• Learned predicates correspond to logical conditions over O2D language: i.e.,
learned symbols are grounded over spatial information

Learning representations that are grounded [2]

Overcoming limitations:
• Augment input with information about states expressed in a simple

domain-independent language

• O2D: simple language that captures basic spatial relations amongst objects

• Learned predicates correspond to logical conditions over O2D language: i.e.,
learned symbols are grounded over spatial information

Learning representations that are grounded [2]

Overcoming limitations:
• Augment input with information about states expressed in a simple

domain-independent language

• O2D: simple language that captures basic spatial relations amongst objects

• Learned predicates correspond to logical conditions over O2D language: i.e.,
learned symbols are grounded over spatial information

Visual language for states: O2D language

mentation of the learning formulation as an answer set pro-
gram is then sketched (full details in the appendix), and ex-
perimental results are presented and analyzed.

2 Related Work
Most works on learning action schemas from traces assume
that the domain predicates are known [Yang et al., 2007;
Walsh and Littman, 2008; Zhuo et al., 2010; Mourao et al.,
2012; Zhuo and Kambhampati, 2013; Stern and Juba, 2017;
Aineto et al., 2019; Lamanna et al., 2021]. The problem of
learning the action schemas and the predicates at the same
time is more challenging as the structure of the states is not
available at all. The LOCM systems [Cresswell et al., 2013;
Cresswell and Gregory, 2011; Gregory and Lindsay, 2016;
Lindsay, 2021] addressed this problem assuming input traces
that feature sequences of ground actions. The inference of
action schemas and predicates follows a number of heuris-
tic rules that manage to learn challenging planning domains
but whose soundness and completeness properties have not
been studied. A general formulation of the learning problem
from complete input traces that feature just action names and
black-box states is given by Bonet and Geffner [2020], and
extensions for dealing with incomplete and noisy traces by
Rodriguez et al. [2021] (see also Verma et al. [2021]). An al-
ternative, deep learning approach for learning action schemas
and predicates from states represented by images is advanced
by Asai [2019]. The advantages of a deep learning approach
based on images are several: it does not face the scalabil-
ity bottleneck of combinatorial approaches, it is robust to
noise, and it yields representations grounded in the images.
The limitation is that the learned planning domains tend to
be complex and opaque. For example, Asai reports 518,400
actions for a Blocksworld instance with 3 blocks. Methods
for learning propositional planning representations that are
grounded have also been proposed [Konidaris et al., 2018;
Asai and Fukunaga, 2018; Asai and Muise, 2020] but they
are bound to work in a single state space involving a fixed set
of objects.

3 Classical Planning
A (classical) planning instance is a pair P = hD, Ii where D
is a first-order planning domain and I represents instance in-
formation [Geffner and Bonet, 2013; Ghallab et al., 2016;
Haslum et al., 2019]. The planning domain D contains
a set of predicates (predicate symbols) p and a set of ac-
tion schemas with preconditions and effects given by atoms
p(x1, . . . , xk) or their negations, where p is a domain pred-
icate and each xi is a variable representing one of the ar-
guments of the action schema. The instance information
is a tuple I = hO, Init, Goali where O is a (finite) set of
objects (object names) oi, and Init and Goal are sets of
ground atoms p(o1, . . . , ok) or their negations, with Init
being consistent and complete; i.e., for each ground atom
p(o1, . . . , ok), either the atom or its negation is (true) in Init.
The set of all ground atoms in P = hD, Ii, At(P), is given
by all the atoms that can be formed from the predicates in D
and the objects in I , while the set of ground actions A(P) is
given by the action schemas with their arguments replaced by

�
?

left below overlap smaller shape

Figure 1: Depiction of the five binary relations in O2D.

objects in P . A state s over P is a maximally consistent set of
ground literals representing a truth valuation over the atoms
in At(P), and a ground action a 2 A(P) is applicable in s,
written a 2 A(s) when its preconditions are (true) in s. A
state s0 is the successor of ground action a in state s, written
s0 = f(a, s) for a 2 s if the effects of a are true in s0 and
the truth of atoms not affected by a is the same in s and s0.
Finally, an action sequence a0, . . . , an is a plan for P if there
is a state sequence s0, . . . , sn+1 such that s0 satisfies Init,
sn+1 satisfies Goal, ai 2 A(ai), and si+1 = f(ai, si).

4 Language of Parsed Images: O2D
Object-recognition vision systems typically map images into
object-tuples of the form {htype(c), loc(c), bb(c), att(c)i}c

that encode the different objects c in the scene, their type or
class, their location and bounding box coordinates, and some
visual attributes like color or shape [Redmon et al., 2016;
Redmon and Farhadi, 2017; Locatello et al., 2020]. We
use a similar encoding of scenes but rather than represent-
ing the exact locations of objects, spatial relations are rep-
resented qualitatively [Cohn and Renz, 2008]. More pre-
cisely, a scene is represented by a set of ground atoms
over a language that we call O2D for Objects in 2D space.
O2D is a first-order language with signature ⌃ = (C, U, R)
where C stands for a set of constant symbols represent-
ing objects and shapes, U stands for a set of unary pred-
icates, and R stands for a set of binary predicates. The
unary predicates in U stand for visually different object types
and characteristics, while the binary predicates are R =
{left, below, overlap, smaller, shape}, representing if one ob-
ject is right to the left of or right below another object, if two
objects overlap, if one object is smaller than another, and the
shape of an object; see Figure 1.

A scene is represented in O2D as a set of ground atoms
over the symbols in ⌃ = (C, U, R). We refer to scene rep-
resentations in O2D as O2D states. Scenes and their corre-
sponding O2D states for Blocks-world, Tower-of-Hanoi, and
Sokoban are shown in Figure 2, with renderings obtained with
PDDLGym [Silver and Chitnis, 2020].

5 Groundings
A grounded predicate q is a predicate that can be evaluated
in any O2D state s; i.e., if o is a tuple of objects in s of the
same arity as q, then q(o) is known to be true or to be false
in s. The predicates p appearing in a planning domain D are
grounded by assuming a pool P of grounded predicates and a
grounding function � that maps the domain predicates p into
grounded predicates q = �(p) in the pool with the same arity
as p. The result is a grounded domain:

States represented as objects, their types, and 5 qualitative, fixed spatial relations.
Grounded predicate: derived from O2D language. Example:
clear(pink_block) := ¬∃x(below(pink_block,x)∧block(x))

O2D & grounded predicates

1 Pool of grounded predicates obtained from primitive O2D predicates using a
(description logic) grammar.

2 The actual description logic grammar used is given by:

C ← U | ⊤ | ⊥ | ∃R.C | C⊓C′ |C ⊑C′

R ← R | R−1 | R◦R′

• Where U and R are primitive O2D unary and binary predicates, respectively.
• Nullary predicates C ⊑C′ are true iff the denotation of C is a subset of the

denotation of C′.

3 Finite pool generated by constructing all predicates up to a given grammar
complexity, pruning syntactic variants

Experimental results: some models learned

[Grid] Pickup(p,k):
pre: armempty, at(R, p), at(p,k)
eff: ¬armempty, ¬somecell(k), ¬at(p,k), ¬at(k, p)

groundings:
armempty := SUBSET[key,ER[overlap,Top]]
somecell := INTER[key,ER[overlap,Top]]
at := overlap

[Sokoban] Pushdown(x,y,z,c):
static: below(z,y), below(y,x)
pre: at(Sok,x), at(c,y), ¬nempty(z)
eff: ¬nempty(x), nempty(z), at(Sok,y), at(y,Sok), ¬at(Sok,x)
eff: ¬at(x,Sok), ¬at(y,c), ¬at(c,y), at(c,z), at(z,c)

Experimental results for some domains: input data

Predicate pool P

Domain (#inst.) #obj. #const. |A| |S| #edges |P| compl time

Blocksworld (5) 5 2 4 1,020 2,414 79 4 9.13
Towers of Hanoi (5) 8 1 4 363 1,074 14 2 2.03
Sliding Tile (7) 11 1 4 742 1,716 16 2 0.96
IPC Grid (19) 11 1 10 9,368 23,530 164 4 316.64
Sokoban1 (95) 22 3 8 1,936 5,042 18 2 8.54
Sokoban2 (24) 27 3 8 12,056 36,482 18 2 160.48

Experimental results for some domains: learning stats

Learning time in seconds

Domain #iter #inst. #states solve ground verif. total

Blocksworld 7 3 16 0.29 23.37 29.42 53.70
Towers of Hanoi 6 4 27 1.56 12.67 0.59 15.06
Sliding Tile 6 5 10 0.11 2.89 1.20 4.43
IPC Grid 27 12 127 693.44 3,536.23 2,404.87 6,653,03
Sokoban1 10 9 13 16.18 285.56 9.18 311.79
Sokoban2 11 8 56 7,250.67 5,314.35 165.19 12,740.43

Experimental results: planning with the learned models

Initial state Goal state
Figure: Sokoban instance. Optimal plans of length 156 are found using the original
“hidden” domain and the learned grounded domain.

Wrap-up

• AML can be casted as a combinatorial optimization problem: find simplest
planning domain given data

• State representation language and action dynamics can be learned
simultaneously. Meaning of learned symbols can be ground in simple,
domain-independent language capturing visual relationships

• Learned representations are interpretable and general

• Future work: obtain visual description directly from images; learn action
representations with deep learning.

Wrap-up

• AML can be casted as a combinatorial optimization problem: find simplest
planning domain given data

• State representation language and action dynamics can be learned
simultaneously. Meaning of learned symbols can be ground in simple,
domain-independent language capturing visual relationships

• Learned representations are interpretable and general

• Future work: obtain visual description directly from images; learn action
representations with deep learning.

Wrap-up

• AML can be casted as a combinatorial optimization problem: find simplest
planning domain given data

• State representation language and action dynamics can be learned
simultaneously. Meaning of learned symbols can be ground in simple,
domain-independent language capturing visual relationships

• Learned representations are interpretable and general

• Future work: obtain visual description directly from images; learn action
representations with deep learning.

Wrap-up

• AML can be casted as a combinatorial optimization problem: find simplest
planning domain given data

• State representation language and action dynamics can be learned
simultaneously. Meaning of learned symbols can be ground in simple,
domain-independent language capturing visual relationships

• Learned representations are interpretable and general

• Future work: obtain visual description directly from images; learn action
representations with deep learning.

Thank you!

[1] B. Bonet and H. Geffner. “Learning first-order symbolic representations
for planning from the structure of the state space”. In: Proc. ECAI. 2020.

[2] Andres Occhipinti Liberman, Blai Bonet, and Hector Geffner. “Learning
First-Order Symbolic Planning Representations That Are Grounded”. In:
3rd ICAPS workshop on Bridging the Gap Between AI Planning and
Reinforcement Learning (2022).

[3] I. D. Rodriguez et al. “Learning First-Order Representations for Planning
from Black-Box States: New Results”. In: KR. arXiv preprint
arXiv:2105.10830. 2021.

[4] Laura Schulz and Elizabeth Bonawitz. “Serious Fun: Preschoolers
Engage in More Exploratory Play When Evidence Is Confounded”. In:
Developmental psychology 43 (Aug. 2007), pp. 1045–50.

[5] Aimee E. Stahl and Lisa Feigenson. “Observing the unexpected
enhances infants’ learning and exploration”. In: Science 348.6230
(2015), pp. 91–94. DOI: 10.1126/science.aaa3799.

https://doi.org/10.1126/science.aaa3799

	References

