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® |ntuitive idea of AML
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® Motivation & examples

© AML: brief overview of existing approaches

@ Some of our work

® Learning simultaneously a state representation + action dynamics
® AML as a combinatorial optimization problem



1. Planning & learning planning representations learning
planning representations
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® Planning problem: given an initial state s, and a goal g, is there some action
sequence (o, . ..,q;) that can take me from s to a state s, which satisfies g?

® Examples: navigating from point A to point B, making dinner...
® Model-based: uses a model of how the world changes in response to actions.

® Model specifies action preconditions (when is action a applicable?) and action
effects (how does state s change if | take action a?)

¢ Planning is simulation: simulate state trajectories induced by action sequences
before acting in the real world



High-level planning vs low-level control

® |n this seminar: planning = high-level planning
® Example:

® Planning goal: robot make eggs for breakfast.
® Possible plan: go to fridge, grab eggs from fridge, put eggs on table, brush
pan with olive oil, crack eggs...

¢ High-level plan will need to be mapped to the robot’s low-level sensorimotor
space (low-level sensing and control)
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® |n this seminar: planning = high-level planning
® Example:

® Planning goal: robot make eggs for breakfast.
® Possible plan: go to fridge, grab eggs from fridge, put eggs on table, brush
pan with olive oil, crack eggs...

¢ High-level plan will need to be mapped to the robot’s low-level sensorimotor
space (low-level sensing and control)

® Assumptions high-level planning problems:

® Finite, discrete state-space
® Interaction in discrete time-steps
® Actions are deterministic



Action model learning: intuitive idea

® Humans aren’t born with internal representations of the world.
e Starting from a young age, they learn them via exploration.

e Children form hypotheses about how actions works, and engage in exploration to
test and refine them [5, 4]. Then use them for planning.
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® Humans aren’t born with internal representations of the world.
e Starting from a young age, they learn them via exploration.

e Children form hypotheses about how actions works, and engage in exploration to
test and refine them [5, 4]. Then use them for planning.

A sophisticated action model learner:)

Example Movie
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e Similarly, an artificial agent may have no internal model for planning.

® Action model learning: problem of learning action representations from data,
gathered by taking actions and observing their results.

® Action representations should be general: model of action generalizes to unseen
scenarios
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Compact & general representations for planning

® A necessary input to any planning algorithm is a description of the problem to be
solved: states, actions, goals

® Simplest representation: state-space graph

® |n practice, explicit enumeration of possible states and state transitions
impossible (typically, #states exponential in #objects)

® Representation not general (each graph tied to a specific instance)

® Compact & general representation is needed (avoid enumeration, makes it easy
to compute transitions on-the-fly).



Compact & general representations

® Some “compact” action representations:
® Neural network f§(s) = s'.

® Action representation implicit in network parameters 6
® | earned from data
® Hard to interpret

® PDDL/STRIPS action schemas:

® Explicit representation a(xi,...,x,) = (pre(a),eff(a)): use
declarative/logical language to define action preconditions and effects.

® Typically hand-coded

® Easy to interpret



PDDL by example: Blocksworld

State representation:

objects and types
block(b-pink).
block(b-yellow) .
robot (r) .
table(t).

relations

clear(b-pink).
on(b-pink,b-yellow).
holding(b-blue).



PDDL by example: Blocksworld

Action representation:

stack block x on top of block y
- (:action stack
:parameters (7x 7y)
:precondition (and
holding(?7x)
clear(7y))
reffect (and
(not holding (7x))
(not clear(?y))
clear(7x)
(handempty)
on(?x,7y))
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Planning domains & problems

® Given action schema a(xj,...,x,) and objects o = (oy,...,0,), the instantiation of
the schema with o is the concrete action a(oy, . . .,0,).

¢ Aplanning domain D = (L,A) is a pair where:
® [ is a set of predicates for describing states
® Ais a set of action schemas
¢ Aplanning problem P = (D, ) is given by a planning domain D = (L,A), and
instance information 7 = (0, 59, ¢), where:
® Ois aset of objects

® 5o is aninitial state
® ¢isagoal

® Planning problem P = (D,I) induces a labelled planning graph G(P) where the
nodes correspond to states and each edge (s,s’) is labelled by action
o =a(oy,...,0,) if ot is executable in s and leads to 5'.
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Pros:

® General representation; size of action schemas constant across instances.
® Human-readable

Cons:

® Typically hand-coded: error-prone, time-consuming task

® “Knowledge acquisition bottleneck”: the excessive cost of human involvement in
converting real-world problems into inputs for symbolic Al systems

Way out? AML



3. AML: brief overview of existing approaches
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AML: beyond the basic case (2), partial state observability

Let D = (L,A) be an unknown domain, and let P, = (Py,...,PB,) be problems
over D.

Given:
@ The language L
@ Planninggraphs partially observed execution traces:

obs(sg),a(01,...,0,),0bs(s),a;(0},...,0)),...
Find: action schemas A defined with language L
s.t.: for any problem P = ((L,A), (0, s0,g)) over D:

G(P) and G((L,A), (0,s0,g)) are isomorphic



AML: beyond the basic case (3), no state observability

Let D = (L,A) be an unknown domain, and let P, = (Py,...,PB,) be problems
over D.

Given:
@ The language L
@ Planninggraphs possible action sequences:
obs{so}, ap(o1,...,0n), @bststha (0],....0}),...

Find: action schemas A defined with language L
s.t.: for any problem P = ((L,A), (0, so,g)) over D:

G(P) and G((L,A), (0, so,g)) are isomorphic
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AML: beyond the basic case (4), no state observability, no action
parameters, no language

Let D = (L,A) be an unknown domain, and let P, = (Py,...,PB,) be problems
over D.

Given:

(D Thelanguage £
@ Planninggraphs execution traces over G(P,),...,G(P,):

id(s0), aofers—=on}id(s1),a1{r—=07). ..

Find: language . and action schemas A
s.t.: for any problem P = ((L,A), (0, s0,g)) over D:

G(P)and G((L,A), (0,s0,g)) are isomorphic



Input: State graph G of agent in 1x3 grid, moving/picking/dropping 2 pkgs

Output: Simplest domain D = (L,A) that generates G:

Move(?to, ?from):

Pre: p2(?from),
Eff: -p2(?from),

Pick(?p, 7x):

Drop(?p, 7x):

Pre: neq(?to, ?7from), p5(?to, ?7from)

Pre: p2(?x), pi,

Eff: -pl,

Pre: p2(?7x), -pi,
Eff: pl,

Interpretation of learned
predicates:

@ pi: gripper empty

@ pa(x): agentat cell x,

© p3(p): agent holds pkg p,
@ ps(p,x): pkg pincellx
@ ps(x,y): cellxadjtoy

® Domain D correct for any grid, any # of packages. Structure of nodes uncovered.
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® Find: domain D = (L,A)
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Key features of this work!

¢ Learn simultaneously state representation language L and domain dynamics A.
® From topology of graph alone (can also accommodate partial graphs)
® Casted as a combinatorial optimization problem:
® Given: graph G
® Find: domain D = (L,A)
® S.t.: Dinduces graph isomorphic to G
® Minimize:
@ Sum of action schema parameters (prefer simpler actions)
@ Sum of predicates arities (prefer simpler state repr.)

© Number of action effects
@ Number of preconditions

® Solved using Answer Set Programming (CLINGO solver)

® Learns solutions that generalize for several standard planning domains

1, 3]



Limitations:

® Input minimal and search relatively unconstrained; limits scalability to more
complex domains

® Learned predicates are ungrounded; symbol grounding needs to be done
manually

Move (?to, ?from) :
Pre: neq(?to, ?7from), p5(?to, ?7from)
Pre: p2(?7from), -p2(?to)
Eff: -p2(?from), p2(7to)

Interpretation of learned
predicates:

@ pi: gripper empty
Pick(?p, ?7x):

Pre: p2(?x), pl, -p3(?p), pé4(?p, ?x) @ p2(x): agent at cellx,

Eff: -pl, p3(?p), -p4a(?p, 7x) © p3(p): agent holds pkg p,
Drop(7p, 7x) : @ ps(p,x): pkg pincell x

Pre: p2(?x), -pl, p3(?p), -p4(?p, ?x) @ ps(x,y): cellxadjtoy

Eff: pl, -p3(?p), p4(?p, 7x)
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Learning representations that are grounded [2]

Overcoming limitations:

® Augment input with information about states expressed in a simple
domain-independent language

® 02D: simple language that captures basic spatial relations amongst objects

® Learned predicates correspond to logical conditions over 02D language: i.e.,
learned symbols are grounded over spatial information



Visual language for states: 02D language

left

-

below overlap

% objects and types
robot (r). table(t).
block (b0) . block(bl).

% relations
overlap (b0, r) .

below (t,bl).

smaller (bl,r).

% shapes

shape (r, rectangle) .
shape (b0, rectangle) .

shape

% object and types
sokoban (s) .
crate(cl). crate(c2).
cell(cl_1).

% relations
overlap (s, c3_6) .
overlap (c2, c3_5).
below(c3_6,c_2_6) .

% shapes
shape (cl, rectangle) .

States represented as objects, their types, and 5 qualitative, fixed spatial relations.
Grounded predicate: derived from 02D language. Example:
clear(pink_block) := —Ix(below(pink_block,x) Ablock(x))



02D & grounded predicates

@ Pool of grounded predicates obtained from primitive 02D predicates using a
(description logic) grammar.

@ The actual description logic grammar used is given by:
C«~U|T|L|3RC|CnC'|cCC
R+ R|R"|RoR
® Where U and R are primitive 02D unary and binary predicates, respectively.

® Nullary predicates C C C’ are true iff the denotation of C is a subset of the
denotation of C'.

@© Finite pool generated by constructing all predicates up to a given grammar
complexity, pruning syntactic variants



Experimental results: some models learned

¢ N

L]

[Grid] Pickup(p,k):
pre: armempty, at(R,p), at(p,k)
eff: —armempty, —somecell(k), —at(p,k), —at(k,p)

groundings:

armempty := SUBSET [key ,ER [overlap, Topl]
somecell := INTER [key ,ER [overlap, Top]]

at := overlap

[Sokoban] Pushdown(x,y,z,c¢):

static: below(z,y), below(y,x)

pre: at(Sok,x),at(c,y), ~nempty(z)

eff: —mempty(x), nempty(z), at(Sok,y), at(y,Sok), —at(Sok,x)
—at(x,Sok), —at(y,c), ~at(c,y), at(c,z), at(z,c)




Experimental results for some domains: input data

Predicate pool &

Domain (#inst.) #obj. #const. |[A] IS| #edges || compl  time
Blocksworld (5) 5 4 1,020 2,414 719 9.13
Towers of Hanoi (5) 8 4 363 1,074 14 2.03
Sliding Tile (7) 11 4 742 1716 16 0.96

Sokobanl (95) 22 8 1,936 5,042 18 8.54

2 4
1 2
1 2
IPC Grid (19) 11 1 10 9,368 23,530 164 4 316.64
3 2
Sokoban2 (24) 27 3 8 12,056 36,482 18 2 160.48




Experimental results for some domains: learning stats

Learning time in seconds

Domain #iter #inst. f#fstates solve  ground verif. total
Blocksworld 7 3 16 0.29 23.37 29.42 53.70
Towers of Hanoi 6 4 27 1.56 12.67 0.59 15.06
Sliding Tile 6 5 10 0.11 2.89 1.20 4.43
IPC Grid 27 12 127 693.44 3,536.23 2,404.87 6,653,03
Sokoban1 10 9 13 16.18 285.56 9.18 311.79

Sokoban2 11 8 56 7,250.67 5,314.35  165.19 12,740.43




Experimental results: planning with the learned models

EEEEE EEEEE
EEEEEEEE -] EEEEEEEE -]
L& o - | EE E 2 EEE
= EEE ] = EEE -]
EE = -] EE = &=

= EEEEE = EEEEE
[ ] = = ] =
EETE [ ] EEE B
] EE ] BEE
EEEEE EEEEE
Initial state Goal state

Figure: Sokoban instance. Optimal plans of length 156 are found using the original
“hidden” domain and the learned grounded domain.
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Wrap-up

® AML can be casted as a combinatorial optimization problem: find simplest
planning domain given data

e State representation language and action dynamics can be learned
simultaneously. Meaning of learned symbols can be ground in simple,
domain-independent language capturing visual relationships

® Learned representations are interpretable and general

® Future work: obtain visual description directly from images; learn action
representations with deep learning.



Thank you!
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