

Machine learning-based algorithms for dynamic patient scheduling problems with uncertainty

Tu-San Pham, Antoine Legrain,

Patrick De Causmaecker, Louis-Martin Rousseau

November 4th 2022 - Focus Period Linköping

OPTIMIZATION IN THE HEALTHCARE DOMAIN

Time to tackle health-care wait times in Canada

Mackenzie Moir, Bacchus Barua

https://nationalpost.com > news > canada > why-canada ...

Why Canada's hospital capacity was so easily overwhelmed ...

Jan 17, 2022 — The latest numbers from the OECD show Canada with just one hospital bed for every 400 citizens, a ratio that put us in the bottom tier of OECD ...

SeniorS and HouSing: The Hallenge aread

As Canada's aging population grows, and as. Canadians live longer, there is an overwhelming desire among seniors to "age Canada Research Chair in Analytics thcare worke<mark>rs in Canada durin</mark>g and Logistics in Healthcare

Overwhelming evidence—it's time to fix Canadian health care

- Appeared in the Montreal Gazette, September 9,

Optimizing treatment planning and

delivery in healthcare worsening wait times? - CMAJ News

Aug 28, 2020 — Simpson: Canadians have accepted that some delay is reasonable in order to

https://hospitalnews.com > Topics > Health Care Pr have an equitable health care system, and that's not necessarily a ...

Canada ranks last on number of hospital beds, wait times

For example, Canada ranks 26th (out of 28 countries) for the number of doctors (2.8 per 1,000 people) and 26th (out of 27) for the number of hospital beds ...

UNCERTAINTY IN HEALTHCARE SCHEDULING

Dynamic problems Online decisions

- Stochastic optimization
- MDP (approximate) dynamic programming
- Simulation-based

Machine-learning based approaches

Radiotherapy scheduling for cancer treatments

Cancer incidence (2020)

- 10.000.000 deaths
- 1 out of 6 deaths

Challenges

 Growing and aging population

How to reduce death rates?

- Early detection
 - *Early treatment*

CANCER TREATMENT

Optimizing radiotherapy treatment schedules to reduce patients' waiting times

RADIOTHERAPY TREATMENT

- Linear accelerators (linac)
- Fraction: a small dose of radiation
- Treatment plan
 - Multiple consecutive fractions
 - □ Fraction duration

Patient scheduling with multi-appointments, multi-resources

LITERATURE

- Markov Decision Process & Approximate Dynamic
 Programming (ADP)
 - Patrick et al. 2008
 - □ Saure et al. 2012, 2020 (3 linacs)
 - Gocgun 2018
- Stochastic Programming
 - Legrain et al. 2015 (2 linacs)

CHUM - CENTRE HOSPITALIER DE L'UNIVERSITÉ DE MONTRÉAL

4400 consultations

10 linacs 5 generics 4 specialized 1 cyberknife

3500 new patients

40.000 fractions

(2019)

JGRAY

https://www.graysuite.com/

2021 INNOVE-ACTION BEST STARTUP AWARD

	Category	Percentages (%)	Treatment deadline (days)	Percentage of overdue treatment (%)	Average waiting time (days)
Dalliativo	P1	0.4	1	14.29	1.09
	P2	27.2	3	79.89	6.91
Gurativo	P3	41.4	14	74.55	18.11
	P4	31.0	28	29.89	22.59

Objective: minimizing overdue treatment and waiting time

THE MAIN CHALLENGES

- Preserving linac capacity

 Reserved capacity vs occupancy rate?

 A prediction-based
- A prediction-base approach
 - Learn to delay low-priority patients

Scheduling strategies

- Batch scheduling
- Offline scheduling
- Online scheduling
- Prediction-based approach

BATCH SCHEDULING

Palliative patients: schedule at arrival

AN INTEGER PROGRAMMING MODEL FOR BATCH SCHEDULING

$$x_{tl}^{i} = \begin{cases} 1 & \text{if patient } i \text{ receives their treatment on day } t, \text{ linac } l \\ 0 & \text{otherwise} \end{cases}$$

minimize
$$\sum_{i \in \hat{\mathcal{P}}} \sum_{t \in \mathcal{T}, t > a_i} \sum_{l \in \mathcal{L}} \omega_1 (t - a_i) log(t - a_i + 1) x_{tl}^i$$
 waiting time
$$+ \sum_{i \in \hat{\mathcal{P}}} \sum_{t \in \mathcal{T}, t > d_i} \sum_{l \in \mathcal{L}} \omega_2 (t - d_i) log(t - d_i + 1) x_{tl}^i$$
 overdue time

IP MODEL

-0

$\sum \sum x_{tl}^i = 1$	assignment constraint		$\forall i \in \hat{\mathcal{P}}$
$\widetilde{t \in \mathcal{T}} \stackrel{i}{\underset{l \in \mathcal{L}}{\longrightarrow}} $	ready date	$orall i\in\hat{\mathcal{P}},l\in\mathcal{L},t\in$	$\in \{0,\ldots,r_i-1\}$
$\sum \qquad \sum^t \qquad p_i x$	$\hat{C}^i_{t'l} \leq \hat{C}^t_l$	capacity constraints	$\forall t \in \mathcal{T}, l \in \mathcal{L}$
$\sum_{i \in \hat{\mathcal{P}}} \frac{t' = max\{0, t - I_i + 1\}}{\sum} p_i x_{t'l}^i}$	$d_l \le max\{0, \hat{C}_l^t - \gamma C_l^t\}$	} reserved capacity	$\forall t \in \mathcal{T}, l \in \mathcal{L}$
$i \in \mathcal{P}^{\mathcal{C}} t' \in \{t - I_i + 1, \dots, t\}$ $x_{tl}^i \in \{0, 1\}$		$\forall i \in$	$\hat{\mathcal{P}}, t \in \mathcal{T}, l \in \mathcal{L}$

OFFLINE SCHEDULING -THE PERFECT SCENARIO

ONLINE SCHEDULING WITH A GREEDY HEURISTIC

PREDICTION-BASED SCHEDULING

1 linac, capacity 120 time slots Looking for the first eligible date that can accommodate a curative patient with 3 the whole treatment sessions, 10 time slots each Remaining 3 5 15 8 11 18 35 20 linac capacity day index 0 1 10 11 12 13 14 Predicted starting date given by Patient admitted The first eligible date a regression model

How do we predict a "good" starting date for a patient?

TRAINING THE REGRESSION MODEL

Numerical results

- Data generation
- Model selection
- Results on simulated data

- Results on real data
- Explainability with SHAP values

DATA GENERATION

- **Patient arrivals:** Poisson distribution
- Treatment plans: based on historical data
- Instance setting
 - □ Number of linacs
 - □ Arrival rate (average daily number of patients)
- For each instance setting: 500 instances
 - □ 400 for training the regression model
 - □ 100 for testing

PREDICTION MODELS

-0

	Training time	Tra	ining	Test	Testing		
	framing time	MSE	MAE	MSE	MAE		
MLP	116.19	3.45	1.32	3.33	1.29		
SGD	0.35	6.06	1.84	5.61	1.77		
Lasso	0.44	5.97	1.81	5.52	1.74		
ElasticNet	0.25	6.26	1.85	5.83	1.8		
SVR	43.16	3.19	1.07	3.12	1.07		
Decision Tree	0.84	2.41	0.48	6.59	1.4		
Random forest	51	0.38	0.39	2.64	1.03		
XGBoost	7.71	0.96	0.66	2.44	0.97		

SCHEDULING STRATEGIES

-0

	Scheduling strategy	Scheduling palliative patients	Scheduling curative patients		
	Offline	Scheduling once with all future a	rrivals known in advance		
Batch	Daily	Every day	Every day		
Online scheduling	Weekly	Every day	Every Friday		
	Daily greedy	Every day	Every day		
	Greedy	At admission	At admission		
	Prediction-based	At admission	At admission		

24

Arrival rate of 6.0 0 0 0 0 0 0 0 0 40 40 patient (days)
 0 0 0
 0 0 o content Has o content Has Average waiting time per patient (days) oH Ho P1 0000-H HHOO 8 20 Ţ Ţ E -0 30 per 30 -20 overdue time 20 P2 10 10 2 2 50 Average 30 40 P3 20 30 10 50 20 0 F P4 40 10 E ō ø 30 9 9 online-prediction online-prediction online-greedy daily-greedy online-greedy daily-greedy weekly-IP weekly-IP offline daily-IP offline daily-IP

4 LINACS

Arrival rate of 12.0

8 LINACS

EXPERIMENT ON A REAL PATIENT FLOW

- 7 linacs operating 8 hours/day
- High fluctuation in arrival rate
 - □ Instance setting for training: arrival rate of 10.1
 - □ Simulation horizon: 30 days

Scheduling	Avg. occupancy	Waiting time (days)					Overdue time (days)				
strategy	(%)	overall	P1	P2	Р3	P4	overall	P1	P2	Р3	P4
online-greedy	97.45	33.02	5.14	6.13	43.67	44.02	44.02	5.14	3.91	29.74	16.18
daily-greedy	97.51	32.91	6.00	6.23	43.48	43.80	17.71	6.00	3.99	29.58	16.00
daily	97.72	33.53	9.79	9.63	42.87	43.44	18.25	9.79	7.15	28.93	15.65
weekly	97.61	33.04	7.86	7.72	42.42	44.10	17.76	7.86	5.37	28.51	16.19
prediction-based	97.14	32.93	3.29	4.05	44.21	44.94	17.69	3.29	1.99	30.22	16.96

EXPLAINABILITY WITH SHAPLEY VALUES

- **SHAP** (SHapley Additive exPlanations)
 - represent the relative strength of a variable on the outcome
- Widely use for explainability in machine learning
- Highly appreciated in the healthcare domain

GLOBAL INTERPRETATION BEESWARM PLOT

LOCAL INTERPRETATION WATERFALL PLOT

CONCLUSIONS AND CHALLENGES?

- A machine learning-based approach for online dynamic patient scheduling
- Empirical results
 - Improve overdue times of palliative patients, especially on large and crowded hospitals
 - □ Not too sensitive with the fluctuation on the arrival rate
- Explainability with Shapley values
- Challenges: generating offline solutions is expensive

A reinforcement learning approach for the dynamic home health care scheduling and routing problem

Ta Dinh Quy, Tu-San Pham,

Minh Hoang Ha, Louis-Martin Rousseau

November 3rd 2022 - focus period Linköping

HOME HEALTHCARE (HHC)

- Lack of medical resources and expensive health care service costs
- People want to stay at home as long as possible
- Cost-effective and flexible
 - □ costs 32% less than hospital care
- HHC services is one of the fastest growing market in the US and Canada
 - In Canada, 2.2 million people relied on home care services.
 (2012)

https://www.cihi.ca/en/infographic-canadas-seniors-p opulation-outlook-uncharted-territory

HHC SCHEDULING

Mix between an assignment problem and a VRP

HOME HEALTHCARE (HHC)

- Delivery of professional care by workers in a client's home.
- Objective: increase service quality and decrease costs

CHALLENGES

PROBLEM DESCRIPTION

Patient requests

- Episode of cares (nb of weeks)
- Frequency (nb of visits per week)
- Visit pattern

- Nurses
 - Skill level
 - Regulation

Constraints

- Continuity of care
- Time window..

Travel time

THE DYNAMIC HHCSP (DHHCSP)

- Patient's request arrives dynamically.
- Decision:
 - Accept or reject?
 - Online decision
- Obj: maximize the number of patients served.

Nurse 2

SOLUTION APPROACH

- Greedy approach
- Scenario-based
- Reinforcement learning

DISTANCE-BASED INSERTION HEURISTIC

Bennett & Erera (2011)

Greedy heuristic:

- \rightarrow Each nurse
- → Each visit pattern
- → Find the cheapest insertion
- → Accept if there's an eligible slot
- → Reject otherwise

Nurse

N1	-> 600
N2	-> 400
N3	-> 300

Visit pattern

(M, W)	-> 100
(M, Th)	-> 60
(Tu, Th)	-> 70

Route Cost: total travelling time

SCENARIO BASED APPROACH (SBA)

Demirbilek et al. (2019a)

- 1. Generate a set of future scenarios
- 2. For each scenario
- 3. Run greedy heuristic
- 4. If the patient is not accepted in any scenario
- 5. Reject
- 6. Else
- 7. Schedule the patient to the most frequently assigned

REINFORCEMENT LEARNING

Interacts in a Markov Decision Process

42

REINFORCEMENT LEARNING FOR DYNAMIC REQUEST ACCEPTANCE

Decision: when a new request arrives

43

STATE PRESENTATION

DOUBLE DEEP Q-LEARNING WITH EXPERIENCE REPLAY

1:	Initialize replay memory \mathcal{D}			
2:	Initialize network $\hat{\theta}$, target network $\hat{\theta}$			
3:	for $episode = 1, M$ do			
4:	$s_t \leftarrow s_0$			
5:	for $t = 0, T$ do			
 6:	With probability ϵ select a random action a_t			
7:	Execute a_t , observe r_t , s_{t+1}			
8:	Store (s_t, a_t, r_t, s_{t+1}) in \mathcal{D}			
9:	$s_t \leftarrow s_{t+1}$			
 10:	Sample random <i>minibatch</i> of \mathcal{N} transitions from \mathcal{D}			
11:	for every transition (s_j, a_j, r_j, s_{j+1}) in <i>minibatch</i> do		Calculato tar	rot
12:	$y_j \leftarrow r_j + \gamma Q_{\theta}(s_{j+1}, argmax_{a'}Q_{\hat{\theta}}(s_{j+1}, a'))$		Calculate tal	şei
13:	end for			
14:	Calculate the loss $\mathcal{L} = 1/N \sum_{j=0}^{N-1} (y_j - Q(s_j, a_j; \theta))^2$	Bao	ck-tracking	
15:	Update θ by gradient descent by minimizing the loss \mathcal{L}			
16:	Update target network $\hat{\theta} \leftarrow \theta$ every K steps	Ur	date target n	etwork
17:	end for	υp	every K ste	ns
18.	end for ⁴⁵			

Experimental results

EXPERIMENTAL DESIGN

- Nurses,
 - Working time 8:00 to 16:30
 - 3 skill levels
- Patients
 - Location: uniform distribution in a square of 80*80
 - Travelling time: 1' per unit
 - Time between requests: exponential distribution with expected value
 - 150 (~10 requests/day)
 - 240 (~6 requests/day)
 - 360 (4 requests/day)
- Baselines
 - Greedy
 - SBA

CONCLUSION AND FUTURE WORK

- RL approach for a dynamic HHC scheduling problem
- Future work
 - Multiple objectives (soft constraints, travelling time...)
 - More sources of uncertainty

THANKS! Any questions?

tu-san.pham@polymtl.ca