
Learning Beam Search:
Utilizing Machine Learning to Guide Beam Search for

Solving Combinatorial Optimization Problems

Günther R. Raidl

Institute of Logic and Computation, TU Wien, Austria,
raidl@ac.tuwien.ac.at

ELLIIT Hybrid AI Workshop, Linköping
November 1, 2022

1 / 30

Combinatorial Optimization and Learning

▶ AI/machine learning boom also hit the area of heuristic methods
for combinatorial optimization

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 1: General scheme: Combining Machine Learning and Metaheuristics.

corresponds to the management policy of warehousing and item assignment.

In Kuo et al. (2016a) a PSO algorithm was applied for item assignation

problem in a synchronized zone order picking system. Finally, in Kuo et al.

(2016b) a clustering method based on metaheuristics was proposed to solve

a client segmentation problem.

A major difficulty in the learning process of a machine learning algorithm

is related to the dimension of the dataset. The inadequate handling of the280

dimension of the dataset has as consequence problems of under or overfit-

ting plus a greater amount of computation necessary for its training. Due

to its nature, feature selection is a combinatorial problem and has been ef-

12

▶ Focus here:
▶ utilize learning to better solve a combinatorial optimization problem
▶ with Beam Search (BS)

▶ Let’s keep it simple!

2 / 30

Beam Search (BS)

▶ Limited breadth first search

▶ Evaluates reached nodes at each level and
only expands the β most promising nodes.

▶ Arcs have associated lengths (costs, rewards,. . .)

▶ Assume maximization

▶ Interested in longest path

3 / 30

Motivation
How to evaluate and select nodes?

▶ Evaluation function: f(v) = g(v) + h(v), where

– g(v): length of a best path from the root r to node v.

– h(v): heuristic guidance function that estimates the further
length-to-go from node v in the best case.

Guidance function:

▶ Typically developed manually in a highly problem-specific way.

▶ Often challenging as the function not only needs to deliver good
estimates but also needs to be fast.

Idea:

▶ Use an ML model as guidance function h(v) in BS.

▶ Train ML model offline by “self-play” on many representative
randomly generated problem instances.

→ Learning Beam Search (LBS)

4 / 30

Related Work

▶ A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play:

Silver et al. (2018)

– Based on Monte Carlo Tree Search (MCTS) in which a Neural
Network (NN) estimates for a current position

▶ the expected outcome of the game (→ “value”)
▶ and provides a policy (probability distribution) on next moves

– Learning by self-play, i.e. reinforcement learning in which MCTS
acts as a “quality amplifier”.

▶ Learning Beam Search Policies via Imitation Learning:

Negrinho et al. (2018)

– Learn a BS policy for an abstract structured prediction problem to
traverse the combinatorial search space of beams.

– Pure theoretical work.

5 / 30

LBS: High-Level Procedure

ML model = h(v):

▶ Input: Problem-specific feature vector representing a node v
(state) and possibly some problem instance features.

▶ Output: estimated further length to go from v.

▶ Randomly initialized

Repeat until stopping criterion fulfilled:

▶ Create representative random problem instance

▶ Perform a BS guided by the ML model

▶ From each non-terminal node v with small probability:
▶ Perform a Nested BS (NBS) to obtain approx. length-to-go
▶ Store training sample in a limited size FIFO replay buffer

▶ Perform few training steps with batches of randomly sampled data
from replay buffer

6 / 30

LBS: High-Level Procedure

7 / 30

Experiments on
Longest Common Subsequence (LCS) Problem

▶ Given: set of m input strings S = {s1, . . . , sm} over alphabet Σ.

▶ Goal: Find a longest string that appears as subsequence in any
string of S.

Example: m = 2, |Σ| = 3

s1: ABBA ⇒ ABA.
s2: CABA

8 / 30

Longest Common Subsequence Problem

▶ Applications in computational biology, text editing, etc.

– e.g. to compare two DNA or protein sequences to learn how
homologous they are.

▶ Can be solved efficiently in time O(n2) for m = 2 strings by
dynamic programming (n: string length).

▶ NP-hard for general m.

▶ State-of-the-art heuristic approach for large m and n based on BS
with a theoretically derived expected solution length (EX)
calculation (Djukanovic et al., 2020b).

9 / 30

Variant: Constrained LCS Problem (CLCS)

Extends LCS problem by a pattern string P that must appear as
subsequence in a feasible solution.

Example:

P : CA

s1: ABCBAB ⇒ LCS: ABBA but CLCS: CAB
s2: CABBA

10 / 30

State Graph for LCS Problem

Directed acyclic graph G = (V,A):

▶ States (nodes) in V are represented by position vectors, where root
node r has position 1⃗.

s1: ABBA
⇒ (pvi)i=1,2 =

[
2

3

]
.

s2: CABA

▶ Actions (arcs) in A refers to transitioning from one to another
state by appending a feasible letter to a partial solution.

▶ Actions in a state are feasible if the letter to append exists in each
remaining string of s1, . . . , sm.

11 / 30

State Graph for LCS Problem

Feature vectors (input for ML model):

▶ remaining string lengths:

qvi = |si| − pvi + 1, ∀ i = 1 . . . ,m.

s1: AABA
, (pvi)i=1,2 =

[
2

3

]
⇒ (qvi)i=1,2 =

[
3

2

]
.

s2: CABA

sorted non-decreasingly to get rid of symmetries

▶ minimum letter appearances:

ovc = min
i=1,...,m

|si[pvi , |si|]|c, c ∈ Σ.

s1: AABA
, ovA = min{3, 2} = 2

s2: CABA

12 / 30

Experiments: LCS Benchmark Instances
▶ rat instance set Shyu and Tsai (2009):

– 20 instances composed of sequences from rat genomes.
– all differ in their combinations of values for

▶ n = 600
▶ m ∈ {10, 15, 20, 25, 40, 60, 80, 100, 150, 200}
▶ |Σ| ∈ {4, 20}.

– instances are close to independent random strings.

▶ BB instance set Blum and Blesa (2007):
– 80 random instances.
– ten instances per combination of values for

▶ n = 1000
▶ m ∈ {10, 100}
▶ |Σ| ∈ {2, 4, 8, 24}.

– strings of each instance exhibit large similarities.

Test setting:
▶ Julia 1.6 using the Flux package for the NN.
▶ Intel Xeon E5-2640 v4 2.40GHz, all runs single-threaded,

memory limit of 20 GB.
13 / 30

Experiments: LCS Results on rat and BB Benchmark
Instances

Compared LBS to the state-of-the-art methods from the
literature Djukanovic et al. (2020b).

▶ All training with LBS was done with β = 50.
▶ Tests on the benchmark instances were performed with two

different beam widths:

– Low (computation) time with β = 50.
– High quality with β = 600.

Achieved new best results for

▶ low time experiments: 13 out of 28.

▶ high quality experiments: 7 out of 28.

Runtimes similar to those of BS with EX.

14 / 30

Experimens: CLCS Benchmark Instances and Results

Benchmark set Djukanovic et al. (2020a):

▶ Ten instances for each combination of

– n ∈ {100, 500, 1000}
– m ∈ {10, 50, 100}
– |Σ| ∈ {4, 20}
– n

|P | ∈ {4, 10}, where P denotes the pattern string.

CLCS Results:

▶ All training with LBS was done with β = 50

▶ For tests on the benchmark instances β = 2000 was used.

Achieved new best results in 10 out of 36 cases
Scores worse in only 2 out of 36 cases.

15 / 30

ML Model: Simple Multilayer Perceptron

▶ Make the NN as small as possible.

[5,5
]

[10,
10]

[20,
20]

[40,
40]

[80,
80]

Numbers of nodes in hidden layers

132.5

135.0

137.5

S
o
lu
ti
o
n
le
n
g
th

rat(|Σ| = 4, m = 100, n = 600)

[5,5
]

[10,
10]

[20,
20]

[40,
40]

[80,
80]

Numbers of nodes in hidden layers

25

30

35

S
o
lu
ti
o
n
le
n
g
th

rat(|Σ| = 20, m = 100, n = 600)

Figure: Impact of the numbers of nodes in the hidden layers on the solution
length of LBS on rat benchmark instances.

Robust choice: 20 nodes in both hidden layers.

16 / 30

Impact of Beam Width on Solution Quality

20 30 50 80 100

Beam width

116

118

120

122

S
o
lu
ti
o
n
le
n
g
th

rat(|Σ| = 4, m = 200, n = 600)

20 30 50 80 100

Beam width

32

33

34

S
o
lu
ti
o
n
le
n
g
th

rat(|Σ| = 20, m = 200, n = 600)

Figure: Impact of beam width β′ in training and testing on rat instances.

Reasonable choice: β = 50.

17 / 30

Approximation of the Real LCS Length

How well does a NN trained by LBS predict the real LCS length?

▶ Approximate exact LCS lengths by applying the so far leading BS
with EX guidance function Djukanovic et al. (2020b).

10 40 100 200

m

0.0

2.5

5.0

7.5

M
A
E

|Σ| = 4, n = 600

Method

NN

EX

10 40 100 200

m

0

1

2

3

M
A
E

|Σ| = 20, n = 600

Method

NN

EX

Figure: Mean absolute error of the trained NNs and EX on 10000 test samples,
created by a BS with EX guidance function.

NNs approximate the LCS lengths much better than EX.

18 / 30

Nice!. . . But There are Still Weaknesses

▶ One has to train one model for each combination of m and Σ

▶ Long training times (hours per model) for large string lengths

▶ Weaker results for large string lengths n
▶ Expected lengths-to-go differ only slightly within one beam
→ approximation must be very precise!

Observation:

▶ We do not need to approximate the length-to-go.

▶ Instead, we just need a scoring function to rank the nodes in the
beam.

19 / 30

Relative Value Based Approach (RV-LBS)

Huber and Raidl (2022)

New Input Features:

Let Vext ⊆ V be the expanded set of nodes in the BS.

Cut-off value for remaining strings qvi , for i = 1, . . . ,m:

bsl = max(0, qext − λ|Σ|), (1)

where

qext =
1

m |Vext|

m∑
i=1

∑
v∈Vext

qvi , (2)

denotes the average length of all remaining input strings for all nodes in
Vext, and λ is a control parameter.

20 / 30

Relative Value Function Based Approach (RV-LBS)
Original remaining string lengths: m = 10, n = 100, |Σ| = 4

Cut remaining string lengths: m = 10, n = 100, |Σ| = 4, λ = 1

21 / 30

Relative Value Function Based Approach (RV-LBS)

Target Values:

Evaluate solutions in relation to other states at a current BS level.

▶ Approximation Goal:

h(v) ≈ LCSexp(v)−
1

|Vext|
∑

v′∈Vext

LCSexp(v
′), (3)

LCSexp(v): expected solution length from node v.

22 / 30

Relative Value Function Based Approach
(RV-LBS)

Obtaining Training Samples:

▶ Select whole levels of each BS run to create training data

▶ Utilize NBS to get a approximation of the expected solution length
from a node v onward.

▶ Target value:

yv = NBS(v)− 1

|Vext|
∑

v′∈Vext

NBS(v′), (4)

23 / 30

Relative Value Function Based Approach (RV-LBS)
To get rid of number of the specific number of input strings: m

▶ Compress information of a remaining string lengths vector
q = (q1, . . . , qm) into smaller vector of constant size m′ < m
by downsampling through binning

Figure: Previous LBS vs. downsampling approach m = 100, n = 100, |Σ| = 4.

24 / 30

Results

Training: λ = 1, m′ = 7

m n Σ s RelVal s std

10 100 4 33.8 0.1054

Generalization: λ = 1, m′ = 7

set m n Σ s RelVal s std s LBS s Lit

rat 10 600 4 197.6 2.118 199 201

rat 100 600 4 132.7 2.869 135 133

BL 10 500 4 180.35 1.490 - 182.0

BL 10 1000 4 365.830 1.389 - 368.5

→ RL-LBS trained on a small instance generalizes reasonably well to
larger instances.

rat inst. set Shyu and Tsai (2009), BL inst. set Blum and Festa (2016)
25 / 30

Policy-Based Learning Beam Search

▶ Follows point-of-view from Negrinho et al. (2018):
▶ ML model gets whole beam Vext as input
▶ Learn a scoring function for ranking the nodes, select β best nodes

▶ Special NN architecture

▶ Different loss functions considered and compared

▶ We again utilize Nested BS for obtaining training data

▶ Results comparable to LBS

26 / 30

Comparison to AlphaZero-like MCTS-based Approach

▶ Similar to Silver et al. (2018),
but adapted to single-player scenario, normalization of values

▶ We did not obtain competitive results

▶ BUT: Learning works, because plugging trained NN into a BS
yields almost competitive results!

27 / 30

Conclusions

▶ Built on BS because simple is beautiful!

▶ Learning with Nested BS works surprisingly well

▶ Only exploited a very limited number of features here

▶ Demonstrated on LCS/CLCS problem, but also nice results on
▶ no-wait flowshop problem (Mayerhofer, 2022)
▶ shortest common supersequence problem (ongoing work)
▶ a quantum circuit design problem (ongoing work)

▶ Bootstrapping as in temporal difference learning also works here

▶ Evaluation on a wider-range of benchmark problems remains

▶ For some problems special NN structures (e.g., GNNs) required

▶ Well suited for parallelization
28 / 30

References I

Blum, C. and Blesa, M. J. (2007). Probabilistic beam search for the longest common
subsequence problem. In Stützle, T. et al., editors, Engineering Stochastic Local
Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics,
pages 150–161. Springer.

Blum, C. and Festa, P. (2016). Longest Common Subsequence Problems, pages
55–85.

Djukanovic, M., Berger, C., Raidl, G. R., and Blum, C. (2020a). On solving a
generalized constrained longest common subsequence problem. In Olenev, N.
et al., editors, Optimization and Applications, volume 12422 of LNCS, pages
55–70. Springer.

Djukanovic, M., Raidl, G. R., and Blum, C. (2020b). A beam search for the longest
common subsequence problem guided by a novel approximate expected length
calculation. In Nicosia, G. et al., editors, Proc. of the 5th Int. Conf. on Machine
Learning, Optimization and Data Science, volume 11943 of LNCS, pages 154–167.
Springer.

Huber, M. and Raidl, G. R. (2022). A relative value function based learning beam
search for the longest common subsequence problem. In Moreno-D́ıaz et al.,
editors, Proceedings of EUROCAST 2022 – 18th International Conference on
Computer Aided Systems Theory, LNCS. Springer.

29 / 30

References II

Mayerhofer, J. (2022). Minimizing makespan in flow shops with a reinforcement
learning like approach. Master’s thesis, TU Wien, Vienna, Austria.

Negrinho, R., Gormley, M., and Gordon, G. J. (2018). Learning beam search policies
via imitation learning. In Bengio, S. et al., editors, Advances in Neural Information
Processing Systems, volume 31, pages 10652–10661. Curran Associates, Inc.

Shyu, S. J. and Tsai, C.-Y. (2009). Finding the longest common subsequence for
multiple biological sequences by ant colony optimization. Computers & Operations
Research, 36(1):73–91.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis,
D. (2018). A general reinforcement learning algorithm that masters Chess, Shogi,
and Go through self-play. Science, 362(6419):1140–1144.

30 / 30

	2. Related Work
	References

