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Combinatorial Optimization and Learning

▶ AI/machine learning boom also hit the area of heuristic methods
for combinatorial optimization
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Figure 1: General scheme: Combining Machine Learning and Metaheuristics.

corresponds to the management policy of warehousing and item assignment.

In Kuo et al. (2016a) a PSO algorithm was applied for item assignation

problem in a synchronized zone order picking system. Finally, in Kuo et al.

(2016b) a clustering method based on metaheuristics was proposed to solve

a client segmentation problem.

A major difficulty in the learning process of a machine learning algorithm

is related to the dimension of the dataset. The inadequate handling of the280

dimension of the dataset has as consequence problems of under or overfit-

ting plus a greater amount of computation necessary for its training. Due

to its nature, feature selection is a combinatorial problem and has been ef-
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▶ Focus here:
▶ utilize learning to better solve a combinatorial optimization problem
▶ with Beam Search (BS)

▶ Let’s keep it simple!
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Beam Search (BS)

▶ Limited breadth first search

▶ Evaluates reached nodes at each level and
only expands the β most promising nodes.

▶ Arcs have associated lengths (costs, rewards,. . . )

▶ Assume maximization

▶ Interested in longest path
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Motivation
How to evaluate and select nodes?

▶ Evaluation function: f(v) = g(v) + h(v), where

– g(v): length of a best path from the root r to node v.

– h(v): heuristic guidance function that estimates the further
length-to-go from node v in the best case.

Guidance function:

▶ Typically developed manually in a highly problem-specific way.

▶ Often challenging as the function not only needs to deliver good
estimates but also needs to be fast.

Idea:

▶ Use an ML model as guidance function h(v) in BS.

▶ Train ML model offline by “self-play” on many representative
randomly generated problem instances.

→ Learning Beam Search (LBS)
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Related Work

▶ A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play:

Silver et al. (2018)

– Based on Monte Carlo Tree Search (MCTS) in which a Neural
Network (NN) estimates for a current position

▶ the expected outcome of the game (→ “value”)
▶ and provides a policy (probability distribution) on next moves

– Learning by self-play, i.e. reinforcement learning in which MCTS
acts as a “quality amplifier”.

▶ Learning Beam Search Policies via Imitation Learning:

Negrinho et al. (2018)

– Learn a BS policy for an abstract structured prediction problem to
traverse the combinatorial search space of beams.

– Pure theoretical work.
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LBS: High-Level Procedure

ML model = h(v):

▶ Input: Problem-specific feature vector representing a node v
(state) and possibly some problem instance features.

▶ Output: estimated further length to go from v.

▶ Randomly initialized

Repeat until stopping criterion fulfilled:

▶ Create representative random problem instance

▶ Perform a BS guided by the ML model

▶ From each non-terminal node v with small probability:
▶ Perform a Nested BS (NBS) to obtain approx. length-to-go
▶ Store training sample in a limited size FIFO replay buffer

▶ Perform few training steps with batches of randomly sampled data
from replay buffer
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LBS: High-Level Procedure
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Experiments on
Longest Common Subsequence (LCS) Problem

▶ Given: set of m input strings S = {s1, . . . , sm} over alphabet Σ.

▶ Goal: Find a longest string that appears as subsequence in any
string of S.

Example: m = 2, |Σ| = 3

s1: ABBA ⇒ ABA.
s2: CABA

8 / 30



Longest Common Subsequence Problem

▶ Applications in computational biology, text editing, etc.

– e.g. to compare two DNA or protein sequences to learn how
homologous they are.

▶ Can be solved efficiently in time O(n2) for m = 2 strings by
dynamic programming (n: string length).

▶ NP-hard for general m.

▶ State-of-the-art heuristic approach for large m and n based on BS
with a theoretically derived expected solution length (EX)
calculation (Djukanovic et al., 2020b).
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Variant: Constrained LCS Problem (CLCS)

Extends LCS problem by a pattern string P that must appear as
subsequence in a feasible solution.

Example:

P : CA

s1: ABCBAB ⇒ LCS: ABBA but CLCS: CAB
s2: CABBA
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State Graph for LCS Problem

Directed acyclic graph G = (V,A):

▶ States (nodes) in V are represented by position vectors, where root
node r has position 1⃗.

s1: ABBA
⇒ (pvi )i=1,2 =

[
2

3

]
.

s2: CABA

▶ Actions (arcs) in A refers to transitioning from one to another
state by appending a feasible letter to a partial solution.

▶ Actions in a state are feasible if the letter to append exists in each
remaining string of s1, . . . , sm.
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State Graph for LCS Problem

Feature vectors (input for ML model):

▶ remaining string lengths:

qvi = |si| − pvi + 1, ∀ i = 1 . . . ,m.

s1: AABA
, (pvi )i=1,2 =

[
2

3

]
⇒ (qvi )i=1,2 =

[
3

2

]
.

s2: CABA

sorted non-decreasingly to get rid of symmetries

▶ minimum letter appearances:

ovc = min
i=1,...,m

|si[pvi , |si|]|c, c ∈ Σ.

s1: AABA
, ovA = min{3, 2} = 2

s2: CABA
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Experiments: LCS Benchmark Instances
▶ rat instance set Shyu and Tsai (2009):

– 20 instances composed of sequences from rat genomes.
– all differ in their combinations of values for

▶ n = 600
▶ m ∈ {10, 15, 20, 25, 40, 60, 80, 100, 150, 200}
▶ |Σ| ∈ {4, 20}.

– instances are close to independent random strings.

▶ BB instance set Blum and Blesa (2007):
– 80 random instances.
– ten instances per combination of values for

▶ n = 1000
▶ m ∈ {10, 100}
▶ |Σ| ∈ {2, 4, 8, 24}.

– strings of each instance exhibit large similarities.

Test setting:
▶ Julia 1.6 using the Flux package for the NN.
▶ Intel Xeon E5-2640 v4 2.40GHz, all runs single-threaded,

memory limit of 20 GB.
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Experiments: LCS Results on rat and BB Benchmark
Instances

Compared LBS to the state-of-the-art methods from the
literature Djukanovic et al. (2020b).

▶ All training with LBS was done with β = 50.
▶ Tests on the benchmark instances were performed with two

different beam widths:

– Low (computation) time with β = 50.
– High quality with β = 600.

Achieved new best results for

▶ low time experiments: 13 out of 28.

▶ high quality experiments: 7 out of 28.

Runtimes similar to those of BS with EX.
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Experimens: CLCS Benchmark Instances and Results

Benchmark set Djukanovic et al. (2020a):

▶ Ten instances for each combination of

– n ∈ {100, 500, 1000}
– m ∈ {10, 50, 100}
– |Σ| ∈ {4, 20}
– n

|P | ∈ {4, 10}, where P denotes the pattern string.

CLCS Results:

▶ All training with LBS was done with β = 50

▶ For tests on the benchmark instances β = 2000 was used.

Achieved new best results in 10 out of 36 cases
Scores worse in only 2 out of 36 cases.
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ML Model: Simple Multilayer Perceptron

▶ Make the NN as small as possible.
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Figure: Impact of the numbers of nodes in the hidden layers on the solution
length of LBS on rat benchmark instances.

Robust choice: 20 nodes in both hidden layers.
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Impact of Beam Width on Solution Quality
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Figure: Impact of beam width β′ in training and testing on rat instances.

Reasonable choice: β = 50.
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Approximation of the Real LCS Length

How well does a NN trained by LBS predict the real LCS length?

▶ Approximate exact LCS lengths by applying the so far leading BS
with EX guidance function Djukanovic et al. (2020b).
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Figure: Mean absolute error of the trained NNs and EX on 10000 test samples,
created by a BS with EX guidance function.

NNs approximate the LCS lengths much better than EX.
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Nice!. . . But There are Still Weaknesses

▶ One has to train one model for each combination of m and Σ

▶ Long training times (hours per model) for large string lengths

▶ Weaker results for large string lengths n
▶ Expected lengths-to-go differ only slightly within one beam
→ approximation must be very precise!

Observation:

▶ We do not need to approximate the length-to-go.

▶ Instead, we just need a scoring function to rank the nodes in the
beam.
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Relative Value Based Approach (RV-LBS)

Huber and Raidl (2022)

New Input Features:

Let Vext ⊆ V be the expanded set of nodes in the BS.

Cut-off value for remaining strings qvi , for i = 1, . . . ,m:

bsl = max(0, qext − λ|Σ|), (1)

where

qext =
1

m |Vext|

m∑
i=1

∑
v∈Vext

qvi , (2)

denotes the average length of all remaining input strings for all nodes in
Vext, and λ is a control parameter.

20 / 30



Relative Value Function Based Approach (RV-LBS)
Original remaining string lengths: m = 10, n = 100, |Σ| = 4

Cut remaining string lengths: m = 10, n = 100, |Σ| = 4, λ = 1
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Relative Value Function Based Approach (RV-LBS)

Target Values:

Evaluate solutions in relation to other states at a current BS level.

▶ Approximation Goal:

h(v) ≈ LCSexp(v)−
1

|Vext|
∑

v′∈Vext

LCSexp(v
′), (3)

LCSexp(v): expected solution length from node v.
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Relative Value Function Based Approach
(RV-LBS)

Obtaining Training Samples:

▶ Select whole levels of each BS run to create training data

▶ Utilize NBS to get a approximation of the expected solution length
from a node v onward.

▶ Target value:

yv = NBS(v)− 1

|Vext|
∑

v′∈Vext

NBS(v′), (4)
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Relative Value Function Based Approach (RV-LBS)
To get rid of number of the specific number of input strings: m

▶ Compress information of a remaining string lengths vector
q = (q1, . . . , qm) into smaller vector of constant size m′ < m
by downsampling through binning

Figure: Previous LBS vs. downsampling approach m = 100, n = 100, |Σ| = 4.
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Results

Training: λ = 1, m′ = 7

m n Σ s RelVal s std

10 100 4 33.8 0.1054

Generalization: λ = 1, m′ = 7

set m n Σ s RelVal s std s LBS s Lit

rat 10 600 4 197.6 2.118 199 201

rat 100 600 4 132.7 2.869 135 133

BL 10 500 4 180.35 1.490 - 182.0

BL 10 1000 4 365.830 1.389 - 368.5

→ RL-LBS trained on a small instance generalizes reasonably well to
larger instances.

rat inst. set Shyu and Tsai (2009), BL inst. set Blum and Festa (2016)
25 / 30



Policy-Based Learning Beam Search

▶ Follows point-of-view from Negrinho et al. (2018):
▶ ML model gets whole beam Vext as input
▶ Learn a scoring function for ranking the nodes, select β best nodes

▶ Special NN architecture

▶ Different loss functions considered and compared

▶ We again utilize Nested BS for obtaining training data

▶ Results comparable to LBS
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Comparison to AlphaZero-like MCTS-based Approach

▶ Similar to Silver et al. (2018),
but adapted to single-player scenario, normalization of values

▶ We did not obtain competitive results

▶ BUT: Learning works, because plugging trained NN into a BS
yields almost competitive results!
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Conclusions

▶ Built on BS because simple is beautiful!

▶ Learning with Nested BS works surprisingly well

▶ Only exploited a very limited number of features here

▶ Demonstrated on LCS/CLCS problem, but also nice results on
▶ no-wait flowshop problem (Mayerhofer, 2022)
▶ shortest common supersequence problem (ongoing work)
▶ a quantum circuit design problem (ongoing work)

▶ Bootstrapping as in temporal difference learning also works here

▶ Evaluation on a wider-range of benchmark problems remains

▶ For some problems special NN structures (e.g., GNNs) required

▶ Well suited for parallelization
28 / 30



References I

Blum, C. and Blesa, M. J. (2007). Probabilistic beam search for the longest common
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