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Combinatorial Optimization and Learning

▶ AI/machine learning boom also hit the area of combinatorial
optimization

▶ This in many different ways
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Figure 1: General scheme: Combining Machine Learning and Metaheuristics.

corresponds to the management policy of warehousing and item assignment.

In Kuo et al. (2016a) a PSO algorithm was applied for item assignation

problem in a synchronized zone order picking system. Finally, in Kuo et al.

(2016b) a clustering method based on metaheuristics was proposed to solve

a client segmentation problem.

A major difficulty in the learning process of a machine learning algorithm

is related to the dimension of the dataset. The inadequate handling of the280

dimension of the dataset has as consequence problems of under or overfit-

ting plus a greater amount of computation necessary for its training. Due

to its nature, feature selection is a combinatorial problem and has been ef-

12

▶ Focus here: utilize learning to better solve combinatorial
optimization problems (COPs) in heuristic way

▶ Basic idea of learning in MHs not new!
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Learning to Better Optimize
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that the categories and their relationships to each other have been chosen carefully enough to
indicate areas requiring research efforts as well as to help classify future work. We distinguish
three hierarchical ways to use ML in metaheuristics (Fig.1):

• Problem-level data-driven metaheuristics: ML can help in modeling the optimization
problem to solve (e.g. objective function, constraints). It can also assist landscape analysis
and the decomposition of the problem.

• Low-level data-driven metaheuristics: a metaheuristic is composed of different search
components. ML can drive any search component such as the initialization of solution(s), and
the search variation operators (e.g. neighborhoods in local search, mutation and crossover in
evolutionary algorithms). It may also be used to tune the various parameters of a metaheuris-
tic.

• High-level data-driven metaheuristics: this class of data-driven metaheuristics concerns
the selection and generation of metaheuristics, and the design of hybrid and parallel coopera-
tive metaheuristics.

- Landscape analysis
- Objective function
- Constraints
- Problem decomposition

- Initial solution(s)
- Variation operators design
- Variation operators selection
- Parameters tuning

- Metaheuristic selection
- Metaheuristic generation

  Data driven 
metaheuristics

  Problem-level data
driven metaheuristics

   High-level data driven 
        metaheuristics 

   Low-level data driven 
       metaheuristics 

Offline data driven
   metaheuristics

Online data driven
   metaheuristics

Fig. 1. A general taxonomy of data-driven metaheuristics.

Other flat criteria are used in the taxonomy such as the learning time. In offline data-driven
metaheuristics, the ML process occurs a priori before starting to solve the problem. In online data
driven-metaheuristics, ML gather knowledge during the search while solving the problem.
The synergy between ML and optimization has received increasing attention. Most of the

related works basically focus on the use of optimization algorithms in solving ML problems
[24][192][126][42][51]. Indeedmost of theML problems can be formulated as optimization problems.
In the last decade there was a considerable interest in the use of ML into optimization. Very few
papers investigate the role ofML into exact optimization algorithms (e.g. branch and bound, dynamic
programming), constraint programming, and mathematical programming [20]. To our knowledge
there is no comprehensive survey which identifies in a unified way how ML can help the design of
metaheuristics. In some outdated surveys [100][42][234], the authors enumerate some data-driven
metaheuristics. In [33] the authors focus on dynamic combinatorial optimization problems. In [196],
we have proposed a taxonomy of hybrid metaheuristics, in which the combination of metaheuristics
with mathematical programming, constraint programming and ML has been addressed. In this

ACM Comput. Surv., Vol. 00, No. 00, Article 00. Publication date: 2020.

(from Talbi (2021))
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Reinforcement Learning (RL)

▶ A sub-discipline of machine learning

▶ Environment is usually considered a Markov decision process

▶ Framework:

Environment

Agent

A
ct
io
n

State observed

Reward

▶ Constructing a solution to a COP can be seen as an episode in an
environment, objective value =̂ reward
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Reinforcement Learning (RL) - Classification

(from Mazyavkina et al. (2021))
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Encoding of Problems+States, ML Models

▶ encoding highly problem-specific

▶ variants of (deep) neural networks dominate the used ML models
▶ recurrent neural networks, e.g., LSTMs

▶ pointer networks (Vinyals et al., 2015)

▶ variants of Graph Neural Networks (Scarselli et al., 2008), e.g.,
▶ Structure-to-Vector Network (Dai et al., 2016)
▶ Graph Convolutional Network (Kipf and Welling, 2017)
▶ Graph Isomorphism Network (Xu et al., 2019)
▶ Graph Attention Network (Kool et al., 2019; Joshi et al., 2021)
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Learning to Solve Graph Problems

▶ Dai et al. (2017): S2V-DQN

▶ min vertex cover, max cut, TSP considered

▶ graph embedding network structure2vec used to “featurize” nodes

▶ variant of Q-learning used to obtain a policy for greedily
constructing solutions

State Embedding the graph + partial solution Greedy node selection

1st iteration

2nd iteration

Θ

Θ
ΘΘ

Θ

Θ

Θ
ΘΘ

Θ

ReLuReLu

ReLuReLu

Embed 
graph

Greedy: add 
best node

Embed 
graph

Greedy: add 
best node

Figure 1: Illustration of the proposed framework as applied to an instance of Minimum Vertex Cover. The
middle part illustrates two iterations of the graph embedding, which results in node scores (green bars).

Despite the inherent similarity between problem instances arising in the same domain, classical
algorithms do not systematically exploit this fact. However, in industrial settings, a company may
be willing to invest in upfront, offline computation and learning if such a process can speed up its
real-time decision-making and improve its quality. This motivates the main problem we address:

Problem Statement: Given a graph optimization problem G and a distribution D of problem
instances, can we learn better heuristics that generalize to unseen instances from D?

Recently, there has been some seminal work on using deep architectures to learn heuristics for
combinatorial problems, including the Traveling Salesman Problem [37, 6, 14]. However, the
architectures used in these works are generic, not yet effectively reflecting the combinatorial structure
of graph problems. As we show later, these architectures often require a huge number of instances in
order to learn to generalize to new ones. Furthermore, existing works typically use the policy gradient
for training [6], a method that is not particularly sample-efficient. While the methods in [37, 6] can
be used on graphs with different sizes – a desirable trait – they require manual, ad-hoc input/output
engineering to do so (e.g. padding with zeros).

In this paper, we address the challenge of learning algorithms for graph problems using a unique
combination of reinforcement learning and graph embedding. The learned policy behaves like a
meta-algorithm that incrementally constructs a solution, with the action being determined by a graph
embedding network over the current state of the solution. More specifically, our proposed solution
framework is different from previous work in the following aspects:

1. Algorithm design pattern. We will adopt a greedy meta-algorithm design, whereby a feasible
solution is constructed by successive addition of nodes based on the graph structure, and is maintained
so as to satisfy the problem’s graph constraints. Greedy algorithms are a popular pattern for designing
approximation and heuristic algorithms for graph problems. As such, the same high-level design can
be seamlessly used for different graph optimization problems.

2. Algorithm representation. We will use a graph embedding network, called structure2vec
(S2V) [9], to represent the policy in the greedy algorithm. This novel deep learning architecture
over the instance graph “featurizes” the nodes in the graph, capturing the properties of a node in the
context of its graph neighborhood. This allows the policy to discriminate among nodes based on
their usefulness, and generalizes to problem instances of different sizes. This contrasts with recent
approaches [37, 6] that adopt a graph-agnostic sequence-to-sequence mapping that does not fully
exploit graph structure.

3. Algorithm training. We will use fitted Q-learning to learn a greedy policy that is parametrized
by the graph embedding network. The framework is set up in such a way that the policy will aim
to optimize the objective function of the original problem instance directly. The main advantage of
this approach is that it can deal with delayed rewards, which here represent the remaining increase in
objective function value obtained by the greedy algorithm, in a data-efficient way; in each step of the
greedy algorithm, the graph embeddings are updated according to the partial solution to reflect new
knowledge of the benefit of each node to the final objective value. In contrast, the policy gradient
approach of [6] updates the model parameters only once w.r.t. the whole solution (e.g. the tour in
TSP).

2
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Learning to Solve Graph Problems (cont.)

▶ Kool et al. (2019)

▶ Autoregressive multi-head attention-based encoder/decoder GNN

▶ for TSP, VRP

▶ Trained with REINFORCE
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Learning to Solve Graph Problems (cont.)
▶ Li et al. (2018)

▶ max independent set, min vertex cover, max clique, SAT considered

▶ Graph Convolutional Network (GCN) used to predict likelihood of
each node to be part of a solution

▶ GCN yields multiple probability maps to account for the fact that
multiple optimal solutions may exist

▶ heuristic tree search utilizing multiple maps,
graph reduction, basic local search applied

▶ supervised learning instead of reinforcement learning

▶ results competitive to state-of-the-art solvers reported

GCN

Input Graph

Local
Search

Reduced Graph

…

…

…

Guided Tree Search

Graph 
Reduction

Choose 
the best

…Leaf

Not leaf

Figure 1: Algorithm overview. First, the input graph is reduced to an equivalent smaller graph. Then
it is fed into the graph convolutional network f , which generates multiple probability maps that
encode the likelihood of each vertex being in the optimal solution. The probability maps are used to
iteratively label the vertices until all vertices are labelled. A complete labelling corresponds to a leaf
in the search tree. Internal nodes in the search tree represent incomplete labellings that are generated
along the way. The complete labellings generated by the tree search are refined by rapid local search.
The best result is used as the final output.

Satisfiability (SAT). Consider a Boolean expression that is built from Boolean variables, parentheses,
and the following operators: AND (conjunction), OR (disjunction), and NOT (negation). Here a
Boolean expression is a conjunction of clauses, where a clause is a disjunction of literals. A literal is
a Boolean variable or its negation. The problem is to find a Boolean labeling of all variables such that
the given expression is true, or determine that no such label assignment exists.

All these problems can be reduced to each other. In particular, the MVC, MC, and SAT problems can
all be represented as instances of the MIS problem, as reviewed in the supplementary material. Thus,
Section 4 will focus primarily on the MIS problem, although the basic structure of the approach is
more general. The experiments in Section 5 will be conducted on benchmarks and datasets for all
four problems, which will be solved by converting them and solving the equivalent MIS problem.

4 Method
Consider a graph G = (V, E ,A), where V = {vi}Ni=1 is the set of N vertices in G, E is the set of E
edges, and A ∈ {0, 1}N×N is the corresponding unweighted symmetric adjacent matrix. Given G,
our goal is to produce a binary labelling for each vertex in G, such that label 1 indicates that a vertex
is in the independent set and label 0 indicates that it’s not.

A natural approach to this problem is to train a deep network of some form to perform the labelling.
That is, a network f would take the graph G as input, and the output f(G) would be a binary labelling
of the nodes. A natural output representation is a probability map in [0, 1]N that indicates how likely
each vertex is to belong to the MIS. This direct approach did not work well in our experiments. The
problem is that converting the probability map f(G) to a discrete assignment generally yields an
invalid solution. (A set that is not independent.) Instead, we will use a network f within a tree search
procedure.

We begin in Section 4.1 by describing a basic network architecture for f . This network generates
a probability map over the input graph. The network is used in a basic MIS solver that leverages
it within a greedy procedure. Then, in Section 4.2 we modify the architecture and training of
f to synthesize multiple diverse probability maps, and leverage this within a more powerful tree
search procedure. Finally, Section 4.3 describes two ideas adopted from classic heuristics that are
complementary to the application of learning and are useful in accelerating computation and refining
candidate solutions. The overall algorithm is illustrated in Figure 1.

4.1 Initial approach
We begin by describing a basic approach that introduces the overall network architecture and leads to
a basic MIS solver. This will be extended into a more powerful solver in Section 4.2.

Let D = {(Gi, li)} be a training set, where Gi is a graph as defined above and li ∈ {0, 1}N×1 is
one of the optimal solutions for the NP-hard graph problem. li is a binary map that specifies which
vertices are included in the solution. The network f(Gi;θ) is parameterized by θ and is trained to
predict li given Gi.
We use a graph convolutional network (GCN) architecture [12, 24]. This architecture can perform
dense prediction over a graph with pairwise edges. (See [7, 14] for overviews of related architectures.)

3
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Learning to Solve Graph Problems

▶ Abe et al. (2020): CombOptZero

▶ min vertex cover, max cut, max clique problems considered

▶ based on the principles of AlphaGoZero

▶ different graph neural networks tested, including GCN

▶ special reward normalization applied

▶ outperforms S2V-DQN, results close to state-of-the-art reported
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Learning Beam Search (Huber and Raidl, 2021)
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A Learning Large Neighborhood Search

for the Staff Rerostering Problem

F. Oberweger, G. Raidl, E. Rönnberg, and M. Huber
CPAIOR 22
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Related Work

▶ Large Neighborhood Search (LNS)
(Pisinger and Ropke, 2010)

▶ Decomposition-based learning LNS
(Song et al., 2020)

▶ Neural LNS
(Addanki et al., 2020)

▶ Neural Neighborhood Selection (NNS)
(Sonnerat et al., 2021)

▶ Our approach builds on NNS
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Staff Rerostering Problem (SRRP)
▶ Given: old schedule, disruptions, demand to be met
▶ Goal: create new schedule

▶ meeting new demand as best as possible (soft)
▶ having as few changes to old schedule as possible (soft)
▶ meeting all hard constraints, e.g., work regulations
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DD

min./max. consec.
working shifts

shift type

exactly one shift
per day

minimum rest of
eleven hours

min./max. total
assignments to
working shifts

min./max. total
assignments per
shift type

no working shift
if absent

min./max. consec.
assignments per

Figure: Overview of hard constraints.
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Large Neighborhood Search (LNS)

▶ Initial solution from a simple construction heuristic

▶ Repeated application of a destroy and a repair operators

unassign
destroy set

d1 d2 d3

n1
n2
n3

repair
solution

d1 d2 d3
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d1 d2 d3

n1
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evaluate, update incumbent, and repeat

incumbent sol.

d1 d2 d3
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n2
n3
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solutionE

E
E E

E
E EE

F F

F
F

F
F

F
FD

D
D D

D
D D D

N N N N N N N N N

destroy set generation

problem instance partial solution new solution

▶ Repair: Mixed Integer Linear Programming (MILP) solver applied

▶ Aiming to create a learning-based destroy operator
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Large Neighborhood Search (LNS)

▶ Initial solution from a simple construction heuristic
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▶ Aiming to create a learning-based destroy operator
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Repair Operator

▶ Regular MILP for feasible solutions

▶ MILP with relaxed hard constraints for infeasible solutions
▶ Hard constraint violations are penalized
▶ Objective value always worse for infeasible solution
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Classical Randomized Destroy Operator
▶ Randomly choose employee-day pairs

▶ Destroy all variables associated with employee-day pairs

▶ Consecutive day constraints: selecting consec. days unlikely

▶ Better select and destroy random sequences of days!
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E E E F F E E

Figure: Destroy operator applied on an example SRRP instance.
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Learning-Based Destroy Operator
Destroy Set Model

▶ Use Graph Neural Network (GNN) Scarselli et al. (2008)

▶ Model current solution as a graph in each state of LNS

▶ Predict weight of an employee-day pair to belong in destroy set

N1 N2 N3

(N1, D1) (N2, D1) (N3, D1) (N1, D2) (N2, D2) (N3, D2) (N1, D3) (N2, D3) (N3, D3)

D1 D2 D3

Figure: Simplified representation of the destroy set model architecture.
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Features

For each assignment (n, d)

▶ flag indicating whether employee n is assigned to shift s ∈ S on day d

▶ flag indicating whether employee n is assigned to shift s ∈ S on day d in the
original roster

▶ flag indicating whether employee n is absent on shift s ∈ S on day d

▶ flag indicating whether the minimum number of consecutive working days
constraint is violated for employee n on day d

▶ flag indicating whether the maximum number of consecutive working days
constraint is violated for employee n on day d

▶ flag indicating whether the minimum number of consecutive assignment
constraint is violated for employee n on day d and shift s ∈ S

▶ flag indicating whether the maximum number of consecutive assignment
constraint is violated for employee n on day d and shift s ∈ S
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Features
For each employee n

▶ total number of working assignments of employee n

▶ total number of working assignments of employee n minus minimum number of
working days in the planning horizon (αmin)

▶ maximum number of working days in the planning horizon (αmax) minus total
number of working assignments of employee n

▶ total number of assignments to shift s ∈ S of employee n

▶ total number of assignments to shift s ∈ S of employee n minus minimum
allowed number of assignments to this shift s (γmin

s )

▶ maximum allowed number of assignments to shift s ∈ S (γmax
s ) minus total

number of assignments to this shift s of employee n

▶ total number of whole day absences of employee n

▶ total number of absences per shift s ∈ S of employee n

For each Day d

▶ total number of assignments to each shift s ∈ S on day d

▶ total number of assignments to each shift s ∈ S on day d minus cover
requirements for this shift s on day d (Rc

ds)
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Learning-Based Destroy Operator
Destroy Set Sampling Strategy

▶ Based on consecutive day observation

▶ Use GNN outputs µnd ∀n ∈ N, d ∈ D for refined sampling

d1 d2 d3 d4 d5 d6 d7

n1

n2

n3

0.1 0.2 0.2 0.5 0.7 0.4 0.2

0.3 0.1 0.40.80.2 0.20.1

0.70.6 0.2 0.1 0.1 0.5 0.3

d1 d2 d3 d4 d5 d6 d7

n1

n2

n3

0.5
∑

Figure: Destroy set sampling strategy.

▶ Regulate influence of GNN with temperature τ

▶ Such that µ
1
τ

nd ∀n ∈ N, d ∈ D
▶ So far τ = 1
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Learning-Based Destroy Operator
Temperature Model

▶ Learn temperature τ for each state with a GNN
▶ Input:

▶ graph representation of current solution
▶ destroy set model outputs

▶ Output: probabilities for selecting temperature in
T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5}
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Figure: Simplified representation of the temperature model architecture.
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Learning-Based Destroy Operator
Training

▶ Offline with representative problem instances via imitation learning

▶ Expert policy:
MILP with local branching constraint to determine optimal destroy
set

▶ Loss function: log-likelihood of expert actions,
cross-entropy for temperature

▶ DAGGER (Ross et al., 2011):
Trajectories are first created with expert strategy,
later with learned model
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Computational Results
▶ Model trained with |N | = 110
▶ MILP + Gurobi optimality gap between 26% and 34%
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Figure: Comparison of LNS RND and LNS NN optimality gaps. 15 minutes
running time. Lower bounds from solving MILP for three hours.
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Conclusions

▶ Large variety of ML-based approaches to support/improve
metaheuristics

▶ Modern RL techniques seem particularly promising
▶ to reduce effort in manually crafting/tuning heuristics
▶ without labeled training data (supervised learning)

▶ Naive application of an RL agent to a COP usually not competitive

▶ Combinations with tree search, local search and problem-specific
heuristics can boost performance substantially

▶ Keep in mind:
▶ (deep) neural networks not always necessary,

e.g., other ML models may be faster & more robust
▶ deep RL can be tricky
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