(Reinforcement) Learning for Guiding Metaheuristics

Günther R. Raidl

Institute of Logic and Computation, TU Wien, Austria, raidl@ac.tuwien.ac.at

ELLIIT Hybrid AI Seminar November 3, 2022

Informatics ac III ALGORITHMS AND COMPLEXITY GROUP

Combinatorial Optimization and Learning

- AI/machine learning boom also hit the area of combinatorial optimization
- This in many different ways

- Focus here: utilize learning to better solve combinatorial optimization problems (COPs) in heuristic way
- Basic idea of learning in MHs not new!

acilii

Learning to Better Optimize

(from Talbi (2021))

Reinforcement Learning (RL)

- A sub-discipline of machine learning
- Environment is usually considered a Markov decision process
- Framework:

acili

Reinforcement Learning (RL)

- A sub-discipline of machine learning
- Environment is usually considered a Markov decision process
- Framework:

Reinforcement Learning (RL) - Classification

(from Mazyavkina et al. (2021))

acili

Encoding of Problems+States, ML Models

- encoding highly problem-specific
- variants of (deep) neural networks dominate the used ML models
 - recurrent neural networks, e.g., LSTMs
 - pointer networks (Vinyals et al., 2015)
 - variants of Graph Neural Networks (Scarselli et al., 2008), e.g.,
 - Structure-to-Vector Network (Dai et al., 2016)
 - Graph Convolutional Network (Kipf and Welling, 2017)
 - Graph Isomorphism Network (Xu et al., 2019)
 - Graph Attention Network (Kool et al., 2019; Joshi et al., 2021)

acilii

Learning to Solve Graph Problems

- Dai et al. (2017): S2V-DQN
- min vertex cover, max cut, TSP considered
- graph embedding network structure2vec used to "featurize" nodes
- variant of Q-learning used to obtain a policy for greedily constructing solutions

acilii

Learning to Solve Graph Problems (cont.)

▶ Kool et al. (2019)

Autoregressive multi-head attention-based encoder/decoder GNN

▶ for TSP, VRP

Trained with REINFORCE

acili

Learning to Solve Graph Problems (cont.)

- ▶ Li et al. (2018)
- max independent set, min vertex cover, max clique, SAT considered
- Graph Convolutional Network (GCN) used to predict likelihood of each node to be part of a solution
- GCN yields multiple probability maps to account for the fact that multiple optimal solutions may exist
- heuristic tree search utilizing multiple maps, graph reduction, basic local search applied
- supervised learning instead of reinforcement learning
- results competitive to state-of-the-art solvers reported

acilii

Learning to Solve Graph Problems

► Abe et al. (2020): CombOptZero

- min vertex cover, max cut, max clique problems considered
- based on the principles of AlphaGoZero
- different graph neural networks tested, including GCN
- special reward normalization applied
- outperforms S2V-DQN, results close to state-of-the-art reported

Learning Beam Search (Huber and Raidl, 2021)

acili

A Learning Large Neighborhood Search for the Staff Rerostering Problem

F. Oberweger, G. Raidl, E. Rönnberg, and M. Huber CPAIOR 22

Related Work

- Large Neighborhood Search (LNS) (Pisinger and Ropke, 2010)
- Decomposition-based learning LNS (Song et al., 2020)
- Neural LNS (Addanki et al., 2020)
- Neural Neighborhood Selection (NNS) (Sonnerat et al., 2021)
- Our approach builds on NNS

Staff Rerostering Problem (SRRP)

- Given: old schedule, disruptions, demand to be met
- Goal: create new schedule
 - meeting new demand as best as possible (soft)
 - having as few changes to old schedule as possible (soft)
 - meeting all hard constraints, e.g., work regulations

Figure: Overview of hard constraints.

Large Neighborhood Search (LNS)

Initial solution from a simple construction heuristic

Repeated application of a destroy and a repair operators

Repair: Mixed Integer Linear Programming (MILP) solver applied

acilii

Large Neighborhood Search (LNS)

Initial solution from a simple construction heuristic

Repeated application of a destroy and a repair operators

- Repair: Mixed Integer Linear Programming (MILP) solver applied
- Aiming to create a learning-based destroy operator

acilii

Repair Operator

Regular MILP for feasible solutions

- MILP with relaxed hard constraints for infeasible solutions
 - Hard constraint violations are penalized
 - Objective value always worse for infeasible solution

- Randomly choose employee-day pairs
- Destroy all variables associated with employee-day pairs

Figure: Destroy operator applied on an example SRRP instance.

<u>- |||||</u>

- Randomly choose employee-day pairs
- Destroy all variables associated with employee-day pairs

Figure: Destroy operator applied on an example SRRP instance.

- JUI

Consecutive day constraints: selecting consec. days unlikely

Better select and destroy random sequences of days!

Figure: Destroy operator applied on an example SRRP instance.

Consecutive day constraints: selecting consec. days unlikely

Better select and destroy random sequences of days!

Figure: Destroy operator applied on an example SRRP instance.

Learning-Based Destroy Operator

Destroy Set Model

- Use Graph Neural Network (GNN) Scarselli et al. (2008)
- Model current solution as a graph in each state of LNS
- Predict weight of an employee-day pair to belong in destroy set

Figure: Simplified representation of the destroy set model architecture.

Learning-Based Destroy Operator

Destroy Set Model

- Use Graph Neural Network (GNN) Scarselli et al. (2008)
- Model current solution as a graph in each state of LNS
- Predict weight of an employee-day pair to belong in destroy set

Figure: Simplified representation of the destroy set model architecture.

Features

For each assignment $\left(n,d\right)$

- \blacktriangleright flag indicating whether employee n is assigned to shift $s \in S$ on day d
- \blacktriangleright flag indicating whether employee n is assigned to shift $s \in S$ on day d in the original roster
- ▶ flag indicating whether employee n is absent on shift $s \in S$ on day d
- flag indicating whether the minimum number of consecutive working days constraint is violated for employee n on day d
- flag indicating whether the maximum number of consecutive working days constraint is violated for employee n on day d
- flag indicating whether the minimum number of consecutive assignment constraint is violated for employee n on day d and shift $s \in S$
- flag indicating whether the maximum number of consecutive assignment constraint is violated for employee n on day d and shift $s \in S$

Features

For each employee \boldsymbol{n}

- total number of working assignments of employee n
- total number of working assignments of employee n minus minimum number of working days in the planning horizon (α_{min})
- maximum number of working days in the planning horizon (α_{max}) minus total number of working assignments of employee n
- total number of assignments to shift $s \in S$ of employee n
- ▶ total number of assignments to shift $s \in S$ of employee n minus minimum allowed number of assignments to this shift s (γ_s^{\min})
- ► maximum allowed number of assignments to shift s ∈ S (γ^{max}_s) minus total number of assignments to this shift s of employee n
- total number of whole day absences of employee n
- total number of absences per shift $s \in S$ of employee n

For each Day \boldsymbol{d}

- \blacktriangleright total number of assignments to each shift $s \in S$ on day d
- ► total number of assignments to each shift s ∈ S on day d minus cover requirements for this shift s on day d (R^c_{ds})

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Figure: Destroy set sampling strategy.

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

random selection proportional to weights

	d_1	d_2	d_3	d_4	d_5	d_6	d_7
n_1	0.3	0.5	0.9	1.4	1.6	1.3	0.6
n_2	0.4	0.6	1.1	1.1	1.1	0.7	0.6
n_3	1.3	1.5	1.0	0.4	0.7	0.9	0.8

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

update underlying weights

Ĺ		d_1	d_2	d_3	d_4	d_5	d_6	d_7
	n_1	0.3	0.5	0.4	0.0	0.0	0.0	0.2
	n_2	0.4	0.6	1.1	1.1	1.1	0.7	0.6
l	n_3	1.3	1.5	1.0	0.4	0.7	0.9	0.8

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Learning-Based Destroy Operator

Destroy Set Sampling Strategy

- Based on consecutive day observation
- ▶ Use GNN outputs $\mu_{nd} \forall n \in N, d \in D$ for refined sampling

Figure: Destroy set sampling strategy.

• Regulate influence of GNN with temperature au

Such that
$$\mu_{nd}^{\frac{1}{\tau}} \forall n \in N, d \in D$$

So far
$$\tau = 1$$

Learning-Based Destroy Operator

Temperature Model

• Learn temperature au for each state with a GNN

Input:

- graph representation of current solution
- destroy set model outputs
- **Output:** probabilities for selecting temperature in $\mathcal{T} = \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 5\}$

Figure: Simplified representation of the temperature model architecture.

Learning-Based Destroy Operator Training

Offline with representative problem instances via imitation learning

Expert policy:

MILP with local branching constraint to determine optimal destroy set

Loss function: log-likelihood of expert actions, cross-entropy for temperature

DAGGER (Ross et al., 2011):

Trajectories are first created with expert strategy, later with learned model

Computational Results

- Model trained with |N| = 110
- MILP + Gurobi optimality gap between 26% and 34%

Figure: Comparison of LNS_RND and LNS_NN optimality gaps. 15 minutes running time. Lower bounds from solving MILP for three hours.

Conclusions

- Large variety of ML-based approaches to support/improve metaheuristics
- Modern RL techniques seem particularly promising
 - to reduce effort in manually crafting/tuning heuristics
 - without labeled training data (supervised learning)
- ► Naive application of an RL agent to a COP usually not competitive
- Combinations with tree search, local search and problem-specific heuristics can boost performance substantially
- Keep in mind:
 - (deep) neural networks not always necessary,
 e.g., other ML models may be faster & more robust
 - deep RL can be tricky

References I

- Abe, K., Xu, Z., Sato, I., and Sugiyama, M. (2020). Solving np-hard problems on graphs with extended alphago zero. arXiv:1905.11623 [cs, stat].
- Addanki, R., Nair, V., and Alizadeh, M. (2020). Neural large neighborhood search. In Learning Meets Combinatorial Algorithms at Conference on Neural Information Processing Systems.
- Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning combinatorial optimization algorithms over graphs. In Advances in Neural Information Processing Systems 31, pages 6348–6358.
- Huber, M. and Raidl, G. R. (2021). Learning beam search: Utilizing machine learning to guide beam search for solving combinatorial optimization problems. In *Machine Learning, Optimization, and Data Science – 7th International Conference, LOD* 2021, volume 11943 of *LNCS*. Springer. to appear.
- Kool, W., van Hoof, H., and Welling, M. (2019). Attention, learn to solve routing problems! arXiv:1803.08475 [cs, stat].
- Li, Z., Chen, Q., and Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. In *Advances in Neural Information Processing Systems 31*, pages 539–548.

References II

- Mazyavkina, N., Sviridov, S., Ivanov, S., and Burnaev, E. (2021). Reinforcement learning for combinatorial optimization: A survey. *Computers & Operations Research*, 134:105400.
- Pisinger, D. and Ropke, S. (2010). Large neighborhood search. In *Handbook of metaheuristics*, pages 399–419. Springer.
- Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and structured prediction to no-regret online learning. In *Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics*, pages 627–635. JMLR Workshop and Conference Proceedings.
- Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The graph neural network model. *IEEE Transactions on Neural Networks*, 20(1):61–80.
- Song, J., Lanka, R., Yue, Y., and Dilkina, B. (2020). A general large neighborhood search framework for solving integer linear programs. In *Advances in Neural Information Processing Systems*, volume 33, pages 20012–20023. Curran Associates, Inc.
- Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., and Nair, V. (2021). Learning a large neighborhood search algorithm for mixed integer programs. *arXiv preprint arXiv:2107.10201*.

- Talbi, E.-G. (2021). Machine learning into metaheuristics: A survey and taxonomy. *ACM Computing Surveys*, 54(6):129:1–129:32.
- Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer Networks. In Advances in Neural Information Processing Systems, volume 28, pages 2692–2700. Curran Associates, Inc.