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Combinatorial Optimization and Learning

» Al/machine learning boom also hit the area of combinatorial
optimization

» This in many different ways

» Focus here: utilize learning to better solve combinatorial
optimization problems (COPs) in heuristic way

» Basic idea of learning in MHs not new!
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Learning to Better Optimize

Problem-level data
driven metaheuristics

- Landscape analysis
- Objective function
- Constraints

- Problem decomposition

Data driven
metaheuristics

y

Low-level data driven
metaheuristics

1 - Initial solution(s)

1 - Variation operators design

1 - Variation operators selection
1 - Parameters tuning

L]
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High-level data driven
metaheuristics

- Metaheuristic selection
- Metaheuristic generation

Offline data driven Online data driven
metaheuristics metaheuristics

(from Talbi (2021))
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Reinforcement Learning (RL) ac

» A sub-discipline of machine learning
» Environment is usually considered a Markov decision process

» Framework:
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Reinforcement Learning (RL) ac

» A sub-discipline of machine learning

» Environment is usually considered a Markov decision process

Environment

4‘%

State observed

» Framework:

Action

» Constructing a solution to a COP can be seen as an episode in an
environment, objective value = reward
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Reinforcement Learning (RL) - Classification ac

Types of RL
methods
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(from Mazyavkina et al. (2021))
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Encoding of Problems+States, ML Models

» encoding highly problem-specific

» variants of (deep) neural networks dominate the used ML models

» recurrent neural networks, e.g., LSTMs

> pointer networks (Vinyals et al., 2015)
» variants of Graph Neural Networks (Scarselli et al., 2008), e.g.,

> Structure-to-Vector Network (Dai et al., 2016)
» Graph Convolutional Network (Kipf and Welling, 2017)

» Graph Isomorphism Network (Xu et al., 2019)
> Graph Attention Network (Kool et al., 2019; Joshi et al., 2021)

Node Features
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Learning to Solve Graph Problems

» Dai et al. (2017): S2V-DQN

» min vertex cover, max cut, TSP considered

acllll

» graph embedding network structure2vec used to “featurize” nodes

» variant of Q-learning used to obtain a policy for greedily
constructing solutions

Embed e le); o) Greedy: add
graph S Q S O - | bestnode o
s E o o [ o Q ’w . _ 1 iteration
.IE .m .|E .m I -
o %
Embed " o) F—o) D Greedy: add
graph S QO & QO - | bestnode
) [Bo O ~Ho | 9 ~c1@ - | —p (\\\8”'“"’"
q o) o) )
L J L I J
State Embedding the graph + partial solution Greedy node selection
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Learning to Solve Graph Problems (cont.)
» Kool et al. (2019)

» Autoregressive multi-head attention-based encoder/decoder GNN
» for TSP, VRP
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> Trained with REINFORCE
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Learning to Solve Graph Problems (cont.)
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>
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Li et al. (2018)
max independent set, min vertex cover, max clique, SAT considered

Graph Convolutional Network (GCN) used to predict likelihood of
each node to be part of a solution

GCN vyields multiple probability maps to account for the fact that
multiple optimal solutions may exist

heuristic tree search utilizing multiple maps,
graph reduction, basic local search applied

supervised learning instead of reinforcement learning

results competitive to state-of-the-art solvers reported

| Not leaf
5] -
: l Aad444 =
» Leaf
e. Graph .. o 1l 0‘ ¢ " 2o, Local : | Choose
. by » Reduction ‘ . . » 0 ﬂlo ﬂ 0 lj 0 @ » » Search |, | the best
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Input Graph Reduced Graph H —)
GCN Guided Tree Search -
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Learning to Solve Graph Problems

vV v.v vV Y
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Abe et al. (2020): CombOptZero

min vertex cover, max cut, max clique problems considered
based on the principles of AlphaGoZero

different graph neural networks tested, including GCN
special reward normalization applied

outperforms S2V-DQN, results close to state-of-the-art reported
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Learning Beam Search (Huber and Raidl, 2021)

Randomly Main BS with beam width NBS calls from selected nodes
generated (solves problem instance ) (generates a training data)

problem instance While performing main BS
" hw) =27 ii

ﬁﬁ

i h(v) = 24 i h(v) = 22

FIFO replay buffer of size y

DS

/

ML model (e.g. NN) (stores training data,
(guides BS) Train ML model removes older samples)
4_ Feature Vectors | Targets
e
[1,1] 27
[1,1] 27 (L4 24
— [3,5] 22
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A Learning Large Neighborhood Search
for the Staff Rerostering Problem

F. Oberweger, G. Raidl, E. Ronnberg, and M. Huber
CPAIOR 22
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Related Work ac'l

» Large Neighborhood Search (LNS)
(Pisinger and Ropke, 2010)

» Decomposition-based learning LNS
(Song et al., 2020)

» Neural LNS
(Addanki et al., 2020)

» Neural Neighborhood Selection (NNS)
(Sonnerat et al., 2021)

» Our approach builds on NNS
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Staff Rerostering Problem (SRRP)

» Given: old schedule, disruptions, demand to be met

» Goal: create new schedule
> meeting new demand as best as possible (soft)
> having as few changes to old schedule as possible (soft)
» meeting all hard constraints, e.g., work regulations

min./max. consec. ~
working shifts | di do ds dy ds dg dr minimum rest of
eleven hours
. n|/N NN N F F D%
min. /max. consec. | "4
assignmentsper 41 ' F E E E DD min./max. total
shift type 2 assignments to
. AT ﬂ DFF NNN working shifts
exactly one shift
per day 7/E E E F F E E|  min/max total
no workin, shift/ assignments per
. € ns|F D D D D D D shift type
if absent \_ )

Figure: Overview of hard constraints.
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Large Neighborhood Search (LNS)

» Initial solution from a simple construction heuristic

» Repeated application of a destroy and a repair operators

problem instance incumbent sol. partial solution new solution
f dy dy d3) create “Tdi dy d3 unassign " [dy dy d3\ repair " Tdy, da ds)
m|E E D solution m|F E D destroy set generation destroy set m|F E solution m|F E E
noy| E D B nlE D F ny D F ny|D D F
ngl N F N n3l N F N ns| N N n3lN N N

evaluate, update incumbent, and repeat

» Repair: Mixed Integer Linear Programming (MILP) solver applied
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Large Neighborhood Search (LNS)

» Initial solution from a simple construction heuristic

» Repeated application of a destroy and a repair operators

probability for each employee-
day pairs to be destroyed

problem instance incumbent sol. partial solution new solution
F dy dy d3) create “Tdi dy d3) " [dy dy d3\ repair " Tdy dy d3)
m|E E D solution m|F E D destroy set destroy set m|F E solution m|F E E
ny|E D B ny|E D F sampling ng D F ny/D D F
n3l N F N n3yl N F N ns| N N nz3l N N N

temperature 7

evaluate, update incumbent, and repeat

» Repair: Mixed Integer Linear Programming (MILP) solver applied

» Aiming to create a learning-based destroy operator
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Repair Operator ac

» Regular MILP for feasible solutions

» MILP with relaxed hard constraints for infeasible solutions

» Hard constraint violations are penalized
» Objective value always worse for infeasible solution
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Classical Randomized Destroy Operator

» Randomly choose employee-day pairs

» Destroy all variables associated with employee-day pairs

Cld dy dy dy ds dg dy)
m|N N[X|N F F D
n|F F E E E|E|E
:::>n3DDFFNNN
m|E|E|E F F E|E
\s|F D D D|[B|B D)

Figure: Destroy operator applied on an example SRRP instance.
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Classical Randomized Destroy Operator

» Randomly choose employee-day pairs

» Destroy all variables associated with employee-day pairs

Cld dy dy dy ds dg dy)
X X| [N F F D
m|/F F EE E| |E
:::>n3DDF N N N
nE|l |EF F E
(ns|F D D D| |B D)

Figure: Destroy operator applied on an example SRRP instance.
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Classical Randomized Destroy Operator

» Consecutive day constraints: selecting consec. days unlikely

» Better select and destroy random sequences of days!

Cld dy dy dy ds dg dy)
m|N XN X NF F D
n|F F E E|E|E|E
:::>n3DDFFNNN
| E|E|E|F F E E
(s|F D D D B B D)

Figure: Destroy operator applied on an example SRRP instance.
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Classical Randomized Destroy Operator

» Consecutive day constraints: selecting consec. days unlikely

» Better select and destroy random sequences of days!

Cld dy dy dy ds dg dy)
m|N XN X NF F D
ns|F F E E
:::>n3DDFFNNN
na F F E E
(s|F D D D B B D)

Figure: Destroy operator applied on an example SRRP instance.
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Learning-Based Destroy Operator

Destroy Set Model
» Use Graph Neural Network (GNN) Scarselli et al. (2008)
» Model current solution as a graph in each state of LNS

» Predict weight of an employee-day pair to belong in destroy set

Figure: Simplified representation of the destroy set model architecture.
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Learning-Based Destroy Operator

Destroy Set Model
» Use Graph Neural Network (GNN) Scarselli et al. (2008)
» Model current solution as a graph in each state of LNS

» Predict weight of an employee-day pair to belong in destroy set

T Node Features

Ouput Representation
%2 T Y1 Node Values
3 : : €0.1] €0.1]

Figure: Simplified representation of the destroy set model architecture.
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Features
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For each assignment (n, d)

>
>

flag indicating whether employee n is assigned to shift s € S on day d

flag indicating whether employee n is assigned to shift s € S on day d in the
original roster

flag indicating whether employee n is absent on shift s € S on day d

flag indicating whether the minimum number of consecutive working days
constraint is violated for employee n on day d

flag indicating whether the maximum number of consecutive working days
constraint is violated for employee n on day d

flag indicating whether the minimum number of consecutive assignment
constraint is violated for employee n on day d and shift s € S

flag indicating whether the maximum number of consecutive assignment
constraint is violated for employee n on day d and shift s € S
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Features

acllll

For each employee n

>
4

4
>

total number of working assignments of employee n

total number of working assignments of employee n minus minimum number of
working days in the planning horizon (ctmin)

maximum number of working days in the planning horizon (cmax) minus total
number of working assignments of employee n

total number of assignments to shift s € S of employee n

total number of assignments to shift s € S of employee n minus minimum
allowed number of assignments to this shift s (y5"")

maximum allowed number of assignments to shift s € S (75"**) minus total
number of assignments to this shift s of employee n

total number of whole day absences of employee n

total number of absences per shift s € S of employee n

For each Day d

>
>

total number of assignments to each shift s € S on day d

total number of assignments to each shift s € S on day d minus cover
requirements for this shift s on day d (Rg,)
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Learning-Based Destroy Operator

Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

I '
(|d d> dy du ds ds ds di dy dy dy ds dg dr )

n1(0.10.210.20 0.5 0.7 0.4 02| > |m ol 05
n2(0.3 0.1 0.2 0.8 0.1 0.2 0.4 no
n3| 0.6 0.7 0.2 0.1 0.1 0.5 0.3 )

\Ji3

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator

Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

I '
(|d do ds di ds ds ds di ds dy dy ds dg dr )

n1] 0.1 0.2/ 0.2 0.5 0.7 0.4 0.2 > |m 0,5 0.9
n2(0.3 0.1 0.2 0.8 0.1 0.2 0.4 no
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Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator

Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

I '
(|d do ds du ds ds ds di dy dy dy ds dg dr )

n1( 0.1 0.2/ 0.2 0.5 0.7 0.4 0.2 | > ni] 0.3 05 0.9
n2(0.3 0.1 0.2 0.8 0.1 0.2 0.4 no
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\Ji3

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator

Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

(ldi do ds da ds ds dr) [ |di do dy dy ds ds dr )
n1(0.1 0.2 0.2 0.5 0.7 0.4 0.2 n1(0.3 0509 1.4 1.6 1.3 0.6
n2| 0.3 0.1 0.2 0.8 0.1 0.2 0.4 ng| 0.4 0.6 1.1 1.1 1.1 0.7 0.6
ngz| 0.6 0.7 0.2 0.1 0.1 0.5 0.3) ns| 1.3 1.5 1.0 0.4 0.7 0.9 0.8

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator
Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

random selection ( dy dy d3 dy ds dg d7w
proportional to weights n1]0.3 0509 1.4 1.6 1.3 0.6

n2|04 0.6 1.1 1.1 1.1 0.7 0.6
ng| 1.3 1.5 1.0 0.4 0.7 0.9 0.8

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator

Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

random selection

proportional to weights
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-

d1 dg d3 d4 d5 d6 d7w

ni

:>m

ns

0.3 0.5 0.9 1.41.6 1.3 0.6
0.4 0.6 1.1 1.1 1.1 0.7 0.6
1.3 1.5 1.0 04 0.7 0.9 0.8

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator
Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

update underlying weights ( di dy d3 dy ds5 dg d7\
n1(0.3 0.5 0.4 0.0 0.0 0.0 0.2
n9| 0.4 0.6 1.1 1.1 1.1 0.7 0.6
n3| 1.3 1.5 1.0 0.4 0.7 0.9 0.8

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator
Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

random selection

proportional to weights

acllll

-

d1 dg d3 d4 d5 d6 d7w

ni

:>m

ns

0.3 0.5 0.4 0.0 0.0 0.0 0.2
0.4 0.6/ 1.1/ 1.1) 1.1 0.7 0.6
1.3 1.5 1.0 04 0.7 0.9 0.8

Figure: Destroy set sampling strategy.
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Learning-Based Destroy Operator
Destroy Set Sampling Strategy

» Based on consecutive day observation

» Use GNN outputs p,q Vn € N,d € D for refined sampling

random selection

proportional to weights
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d1 dg d3 d4 d5 d6 d7w

ni

:>m

ns

0.3 0.5 0.4 0.0 0.0 0.0 0.2
0.4 0.6/ 1.1/ 1.1) 1.1 0.7 0.6
1.3 1.5 1.0 04 0.7 0.9 0.8

Figure: Destroy set sampling strategy.

» Regulate influence of GNN with temperature 7
> Such that 7, ¥n € N,d € D

» Sofarr=1
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Learning-Based Destroy Operator

Temperature Model
» Learn temperature 7 for each state with a GNN
»> Input:
» graph representation of current solution
» destroy set model outputs
» Qutput: probabilities for selecting temperature in
7 =4{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,2,3,5}

Ouput Representation

MLP

Figure: Simplified representation of the temperature model architecture.
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Learning-Based Destroy Operator

Training

» Offline with representative problem instances via imitation learning

» Expert policy:
MILP with local branching constraint to determine optimal destroy
set

» Loss function: log-likelihood of expert actions,
cross-entropy for temperature

» DAGGER (Ross et al., 2011):
Trajectories are first created with expert strategy,
later with learned model
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Computational Results ac

» Model trained with |[N| =110
» MILP + Gurobi optimality gap between 26% and 34%

1 102
EEE LNS_RND
= LNS_NN

10

gapl%]
£y ~
-
gapl%]

2

120 130 140 150 0 100 200 300 400 500 600 700 800
IN| time(s]

Figure: Comparison of LNS_RND and LNS_NN optimality gaps. 15 minutes
running time. Lower bounds from solving MILP for three hours.
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Conclusions
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Large variety of ML-based approaches to support/improve
metaheuristics

Modern RL techniques seem particularly promising

> to reduce effort in manually crafting/tuning heuristics
> without labeled training data (supervised learning)

Naive application of an RL agent to a COP usually not competitive

Combinations with tree search, local search and problem-specific
heuristics can boost performance substantially

Keep in mind:

> (deep) neural networks not always necessary,
e.g., other ML models may be faster & more robust
» deep RL can be tricky
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