Minimizing Entropy to Discover Good Solutions to Recurrent Mixed Integer Programs

Charly Robinson La Rocca,

Emma Frejinger and Jean-François Cordeau

October 21, 2022

ELLIIT 2022

Université m de Montréal

Background

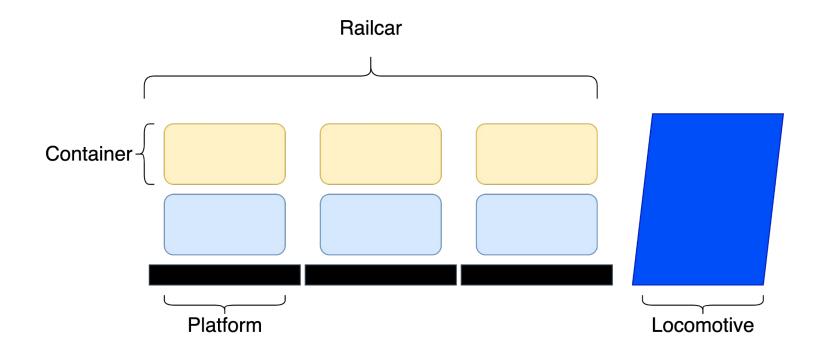
- Our goal is to accelerate the discovery of solutions for real large-scale CO problems that cannot be efficiently solved using current general-purpose solvers.
- Our methodology uses data driven tools within the B&B to estimate the optimal solution.
- <u>Learned heuristic</u>: It produces approximate solutions to get significant speed ups.
- During the last year, we experimented with different applications to figure out how well our method would generalize.
- Key results:
 - Marginal quality loss: Below <u>1%</u> relative gap
 - LAP: <u>5 to 7x</u> runtime speed up on average
 - Network design: <u>2 to 3x</u> runtime speed up on average

Plan

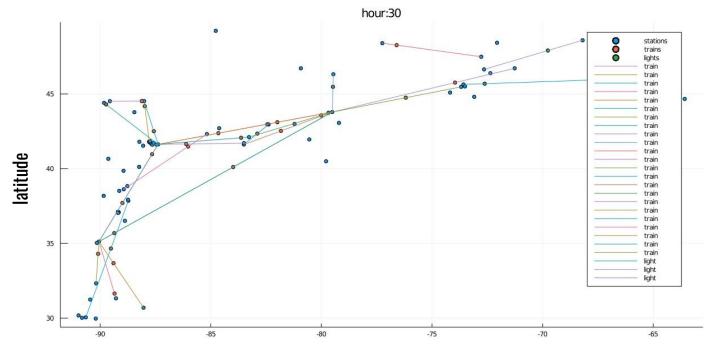
Introduction:

LAP

Basic vocabulary

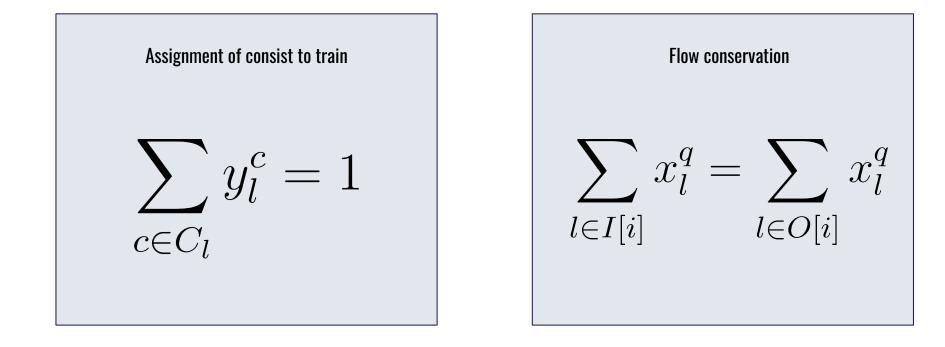


Locomotive assignment problem (LAP)

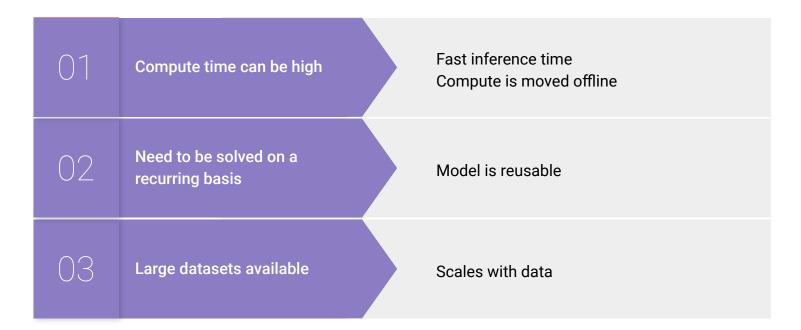


longitude

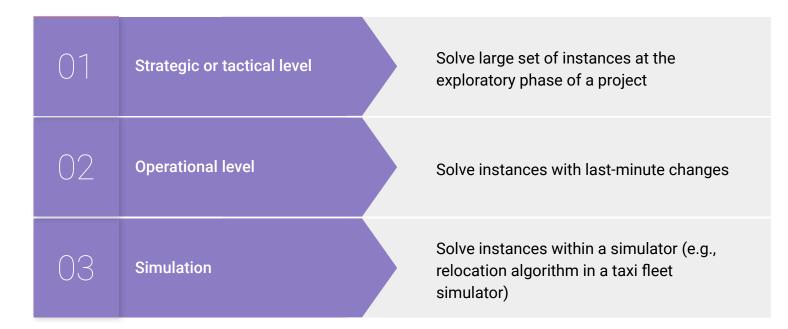
Locomotive assignment problem (LAP)



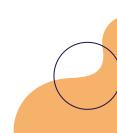
Motivations for ML



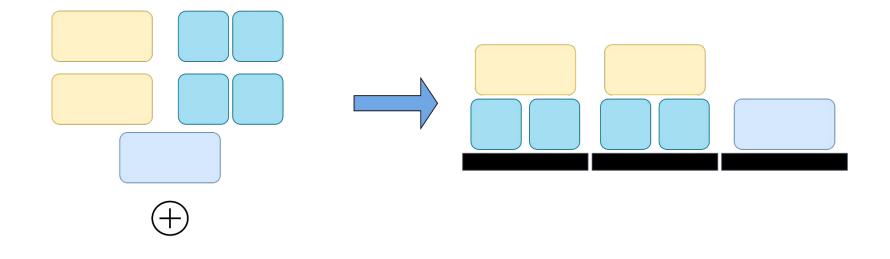
Why a large speed up matters?



Introduction:



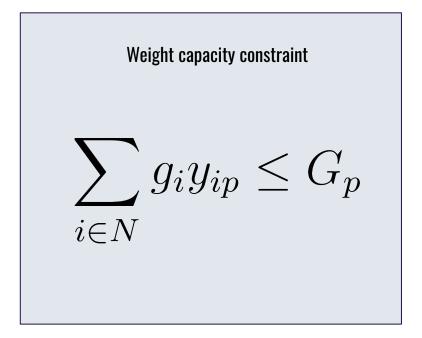
Loading pattern problem (LPP)



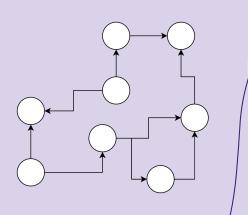
Loading pattern problem (LPP)

Assignment of pattern to railcar

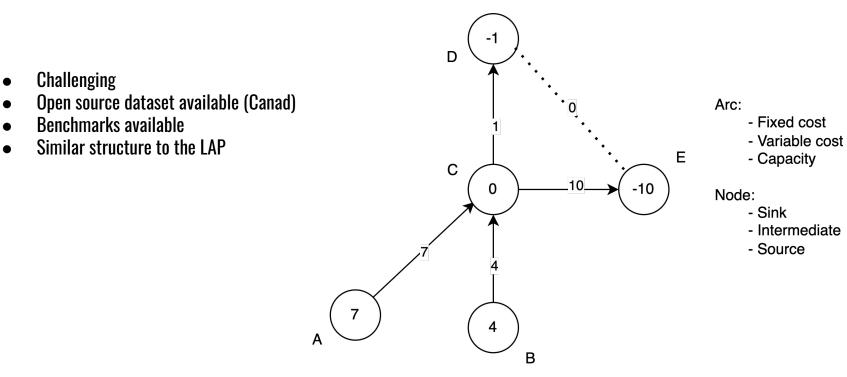
 $\sum_{k \in K} w_j^k = 1$



ntroduction: Network design

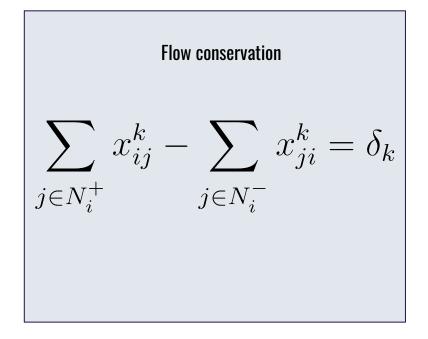


Fixed-charge network design (FCN)



Fixed-charge network design problem (FCN)

Capacity constraint $\sum x_{ij}^k \le u_{ij} y_{ij}$ $k \in K$



Literature review: A story of trade-offs

Literature review

Notable trade-offs

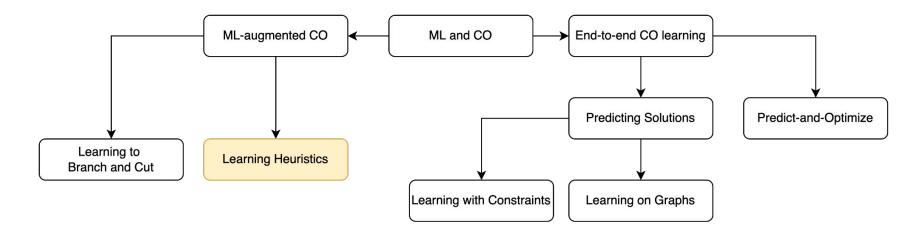
Expressiveness vs Sample efficiency

Underrated ideas ML baselines and training cost discount

Noteworthy surveys

- Lodi, A., & Zarpellon, G. (2017). On learning and branching: a survey. *Top*, *25*(2), 207-236.
- Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: a methodological tour d'horizon. *European Journal of Operational Research*, *290*(2), 405-421.
- Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end constrained optimization learning: A survey. *arXiv preprint arXiv:2103.16378*.

Machine Learning and Constrained Optimization



Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end constrained optimization learning: A survey. *arXiv preprint arXiv:2103.16378*.

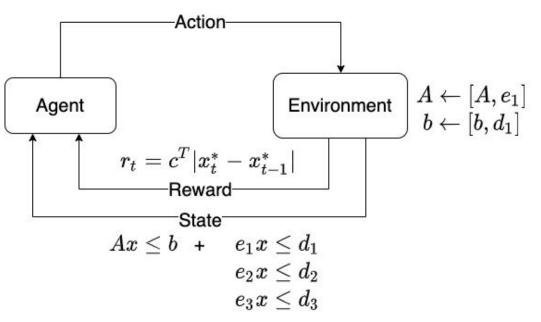
Learning and branching

Motivation:

 $e_1x \leq d_1$

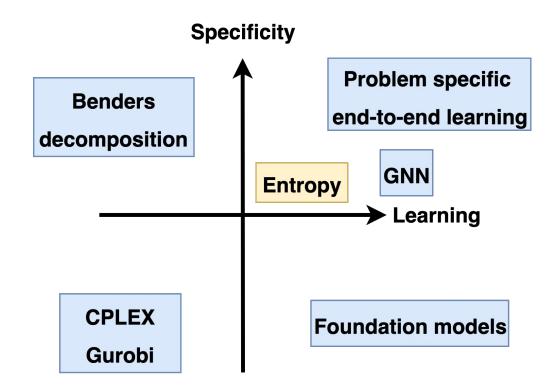
The inclination to use heuristics to deal with the branch-and-bound decisions are justified by the poor understanding from the mathematical standpoint. *There is no deep understanding of the theory underneath branching.*

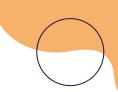
Lodi, A., & Zarpellon, G. (2017). On learning and branching: a survey. Top, 25(2), 207-236.



Tang, Y., Agrawal, S., & Faenza, Y. (2020, November). Reinforcement learning for integer programming: Learning to cut. In *International conference on machine learning* (pp. 9367-9376). PMLR.

Specificity vs Learning for CO

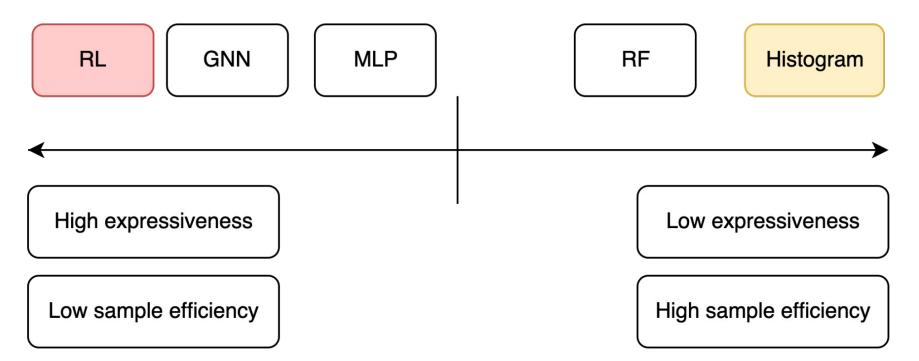




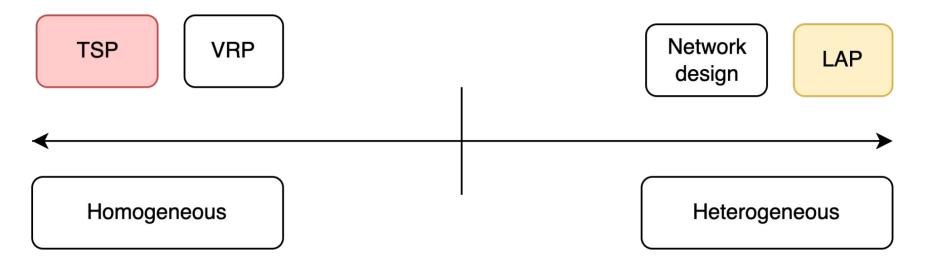
Notable trade-offs

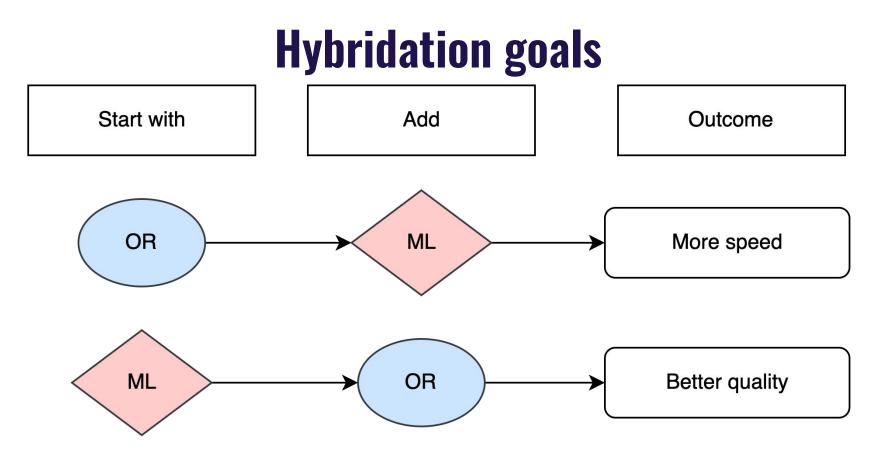
Expressiveness vs sample efficiency

ML Models for CO

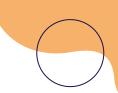


Problem instances





Donti, P. L., Roderick, M., Fazlyab, M., & Kolter, J. Z. (2020). Enforcing robust control guarantees within neural network policies. *arXiv preprint arXiv:2011.08105*.



Underrated ideas

ML baselines and training cost discount

Why a good ML baseline matters?

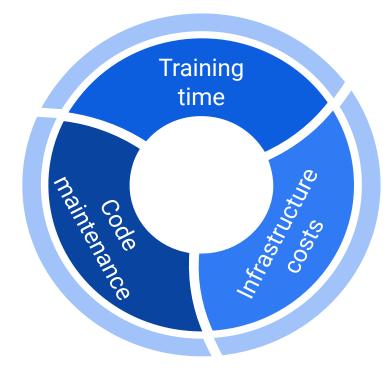
Optimization Pipeline

"By re-implementing their algorithm with a focus on code quality and extensibility, we show that the graph convolution network used in the tree search does not learn a meaningful representation of the solution structure, and can in fact be replaced by random values."

Böther, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., & Friedrich, T. (2022). What's Wrong with Deep Learning in Tree Search for Combinatorial Optimization. *arXiv preprint arXiv:2201.10494*.

Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. Advances in neural information processing systems, 31.

Why training cost discount?



Methodology: Entropy as a baseline

Methodology

Entropy and classifiers

Mathematical formulation

 $\min c^T \mathbf{x}$ s.t. $A\mathbf{x} \le b$ $x_i \in \{0, 1\}$ $x_j \in \mathbb{Z}$ $x_i \geq 0$

 $\forall j \in \mathcal{B}$ $\forall j \in \mathcal{Q}$ $\forall j \in \mathcal{P}$

Mathematical formulation

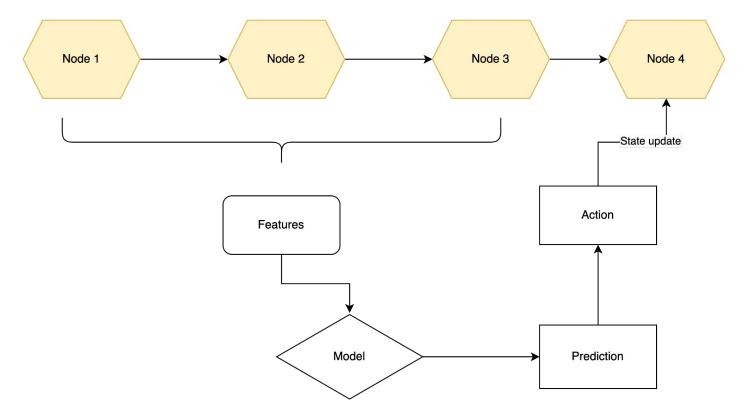
Special Ordered Sets of type 1 (SOS1 or S1) are a set of variables, at most one of which can take a non-zero value, all others being 0.

$$\sum_{k \in K} x_v^k = 1 \qquad \forall v \in V$$

the set of objects in the instance

 x^k_{s} binary variable that models the assignment of the object to the class

B&B integration



B&B integration: Code example

• • •

```
function algorithm_callback(state::StateType, algo::MIPAlgorithm)
    if should_trigger(state, scheduler(algo))
        actions = make_actions!(state, algo)
        map(actions) do action
            apply!(state, action)
        end
    end
end
```

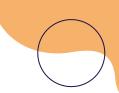
User cut specification

<u>Action</u>: adding a constraint to limit the search space

 $x_{n}^{k} = 1$

•••

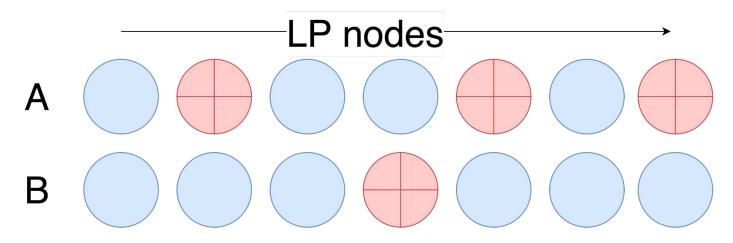
constraint = @build_constraint(state.model[:x][v, k] == 1)
MOI.submit(state.model, MOI.UserCut(state.cb_data), constraint)



Learning tools

Entropy and classifiers

Minimize entropy to reduce assignment risks

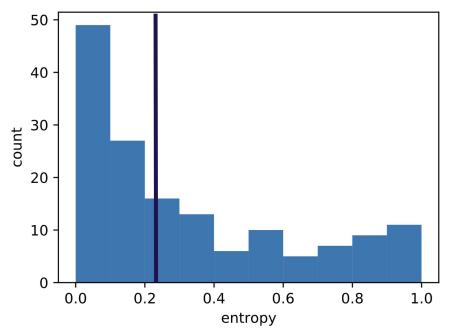


 $H(Z) = -\sum_{i} P(z_i) \log P(z_i)$

 $H(A) > H(B) \implies$ B is more <u>stable</u> than A.

Empirical motivation for entropy

Entropy distribution for a LAP instance



ML baseline: Histogram B

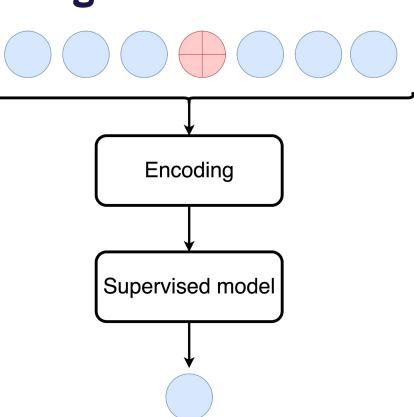
$$\begin{array}{c} P(Blue) = 6/7 \\ P(Red) = 1/7 \end{array} \implies argmax(P(Blue), P(Red)) \implies \end{array}$$

Supervised learning model

В

Why Random Forest (RF) vs DNN?

- Little tuning required
- Small footprint
- No GPU required
- Reaches good accuracy while trained on a single instance
- No gradient available

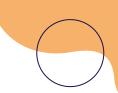


Online features

- Feature vector updates at every node
- Contains relevant data from the visited solutions

$$\phi_t(v) = [\text{mean}(K_{vt}), \text{var}(K_{vt}), \max(K_{vt}), \min(K_{vt})]$$
$$K_{vt} = [k_{v1}, k_{v2}, \dots, k_{vt}]$$

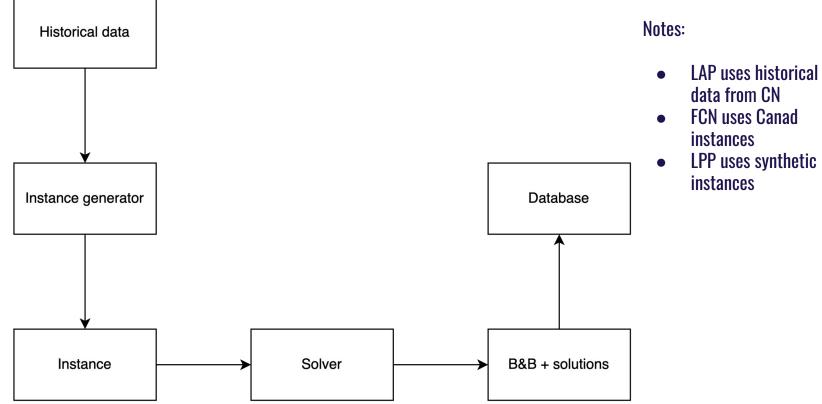
 k_{vt} the class of the object at the current iteration

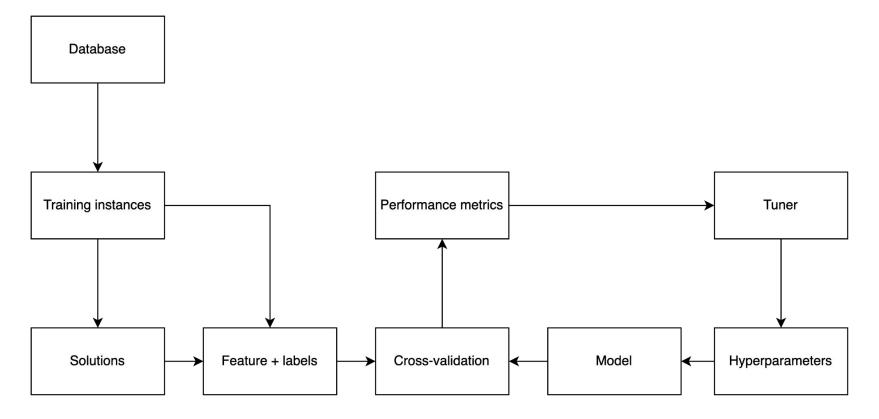


Workflows

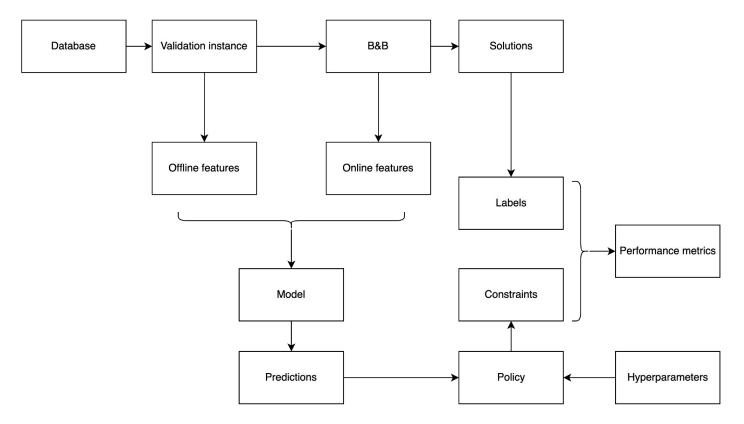
Training, validation and testing

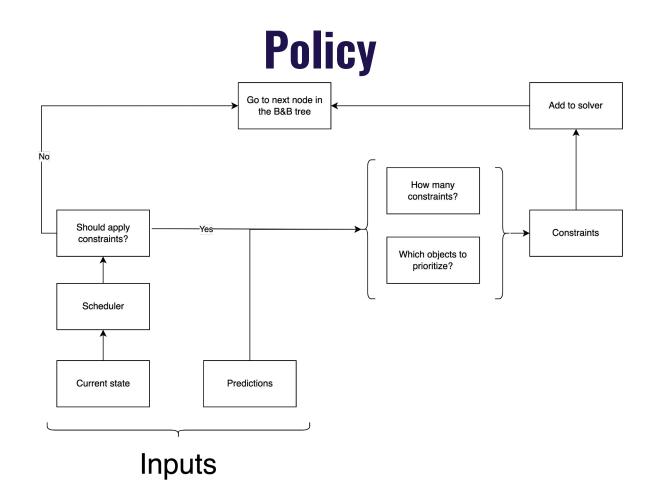
Data generation

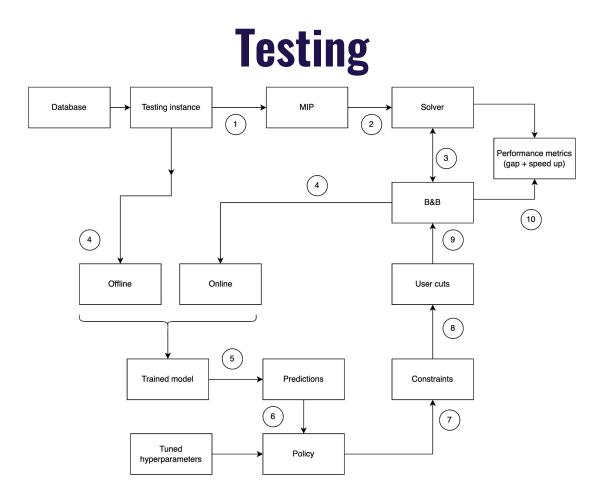




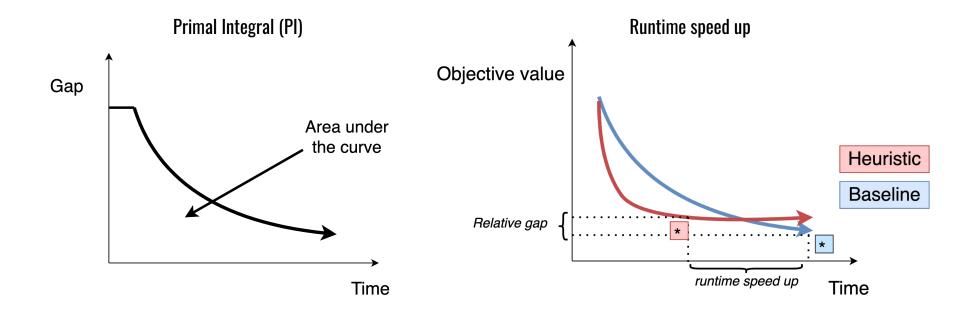
Validation/Simulation



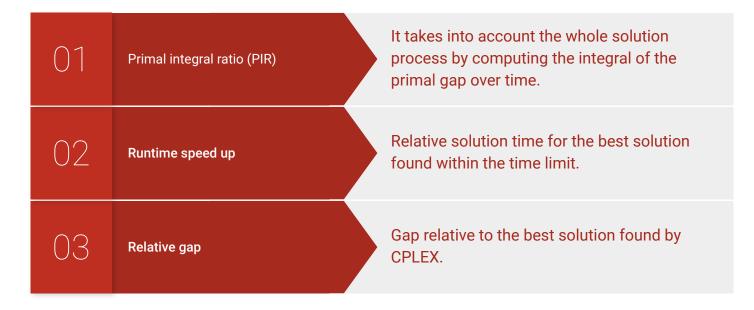




Metrics



Metrics



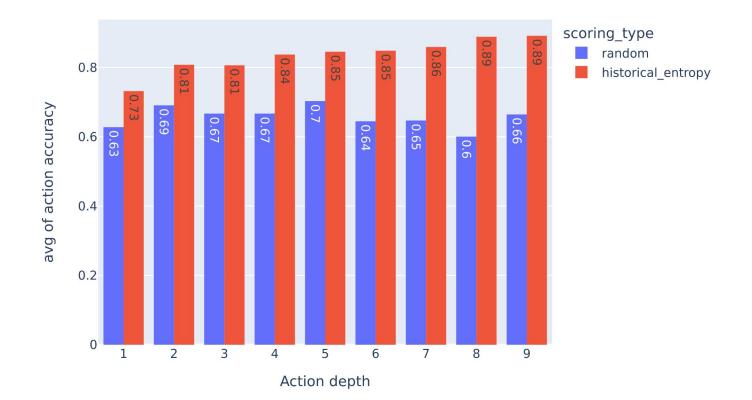
Experimental results: What speed up can we expect?

Experimental results

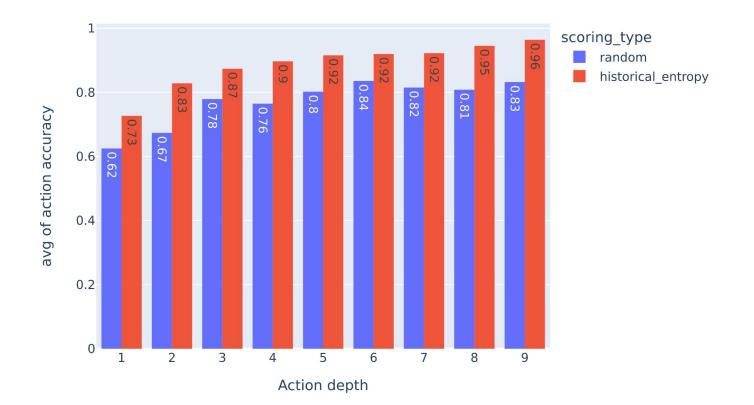
Relative gap vs speed up

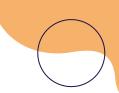
Table 1: Optimility gap (%) distributions using CPLEX							
Problem family	Quantiles Mean						
	0.05 0.5 0.95						
LAPEasy	0.00480	0.00946	0.00999	0.00847			
LAPHard	0.00991	0.12673	0.81034	0.26699			
FCN	0.00273	0.76846	3.31074	1.10769			

Action accuracy vs depth for LAP instances using RF



Action accuracy vs depth for LAP instances using histogram





Scatter plots

Speed up vs relative gap

Oracle

Agent that knows the best known solution.

How?

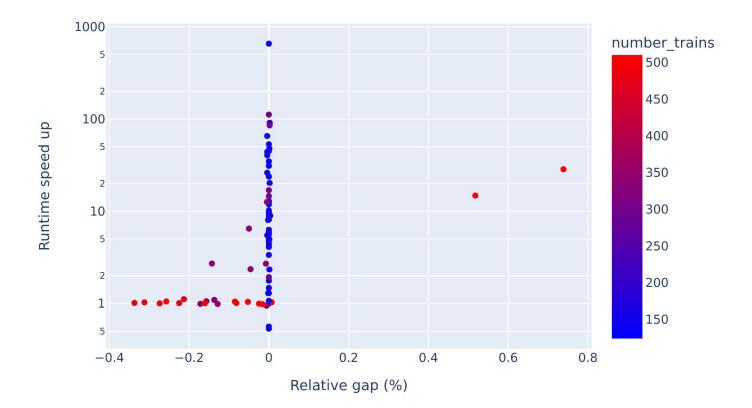
What?

Collects the best solution from baseline and applies constraints accordingly.

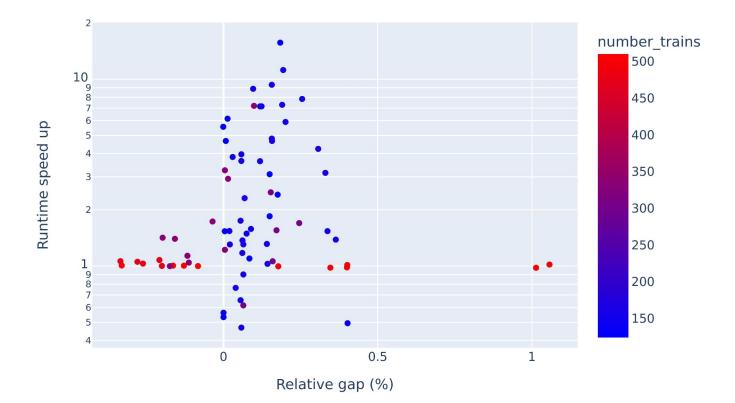
Why?

It gives an estimation of the best case scenario.

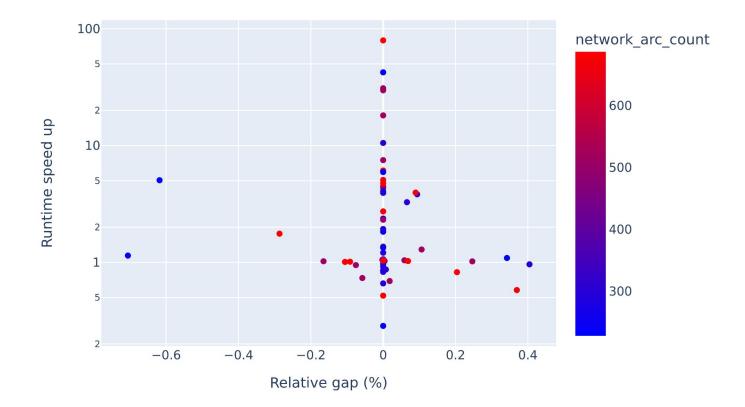
Speed up vs relative gap for LAP instances using oracle



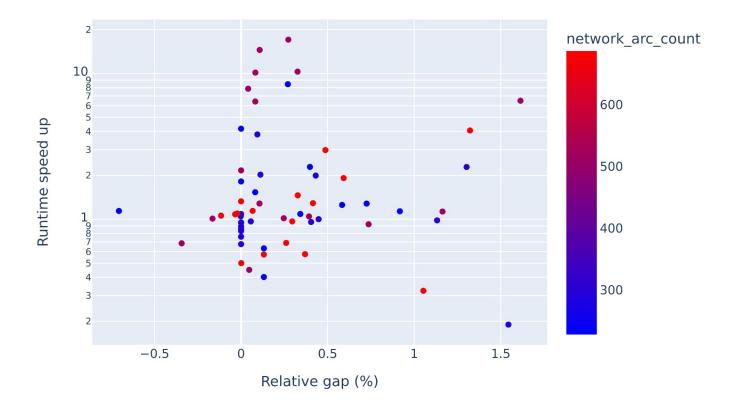
Speed up vs relative gap for LAP instances using histogram

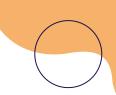


Speed up vs relative gap for FCN instances using oracle



Speed up vs relative gap for FCN instances using histogram





Summary results Quantiles and averages

	Table 2. Runtime speed up distributions for him hasy						
Learner	Pruning	Quantiles			Mean		
		0.05	0.5	0.95			
oracle	High	3.76	25.22	160.76	48.51		
oracle	Low	0.87	2.66	22.83	5.81		
\mathbf{RF}	High	0.63	3.60	24.04	7.26		
\mathbf{RF}	Low	0.52	1.27	4.06	1.85		
histogram	High	0.63	4.16	21.42	7.31		
histogram	Low	0.51	1.23	3.99	1.83		

 Table 2: Runtime speed up distributions for LAPEasy

Table 3: Relative gap (%) distributions for LAPEasy

Learner	Pruning	Quantiles			Mean
		0.05	0.5	0.95	
oracle	High	-0.00044	0.00000	0.00000	0.00005
oracle	Low	-0.00240	0.00000	0.00094	-0.00023
\mathbf{RF}	High	0.06186	0.39592	0.96963	0.46510
\mathbf{RF}	Low	-0.00216	0.01308	0.15983	0.04116
histogram	High	0.06186	0.37970	0.96963	0.43463
histogram	Low	-0.00216	0.01308	0.15983	0.04116

Learner	Pruning	Quantiles			Mean
		0.05	0.5	0.95	
oracle	High	1.16	35.94	304.46	96.61
oracle	Low	0.99	2.52	35.17	9.27
histogram	High	1.00	1.54	20.58	5.88
histogram	Low	1.02	1.15	4.75	1.88

 Table 4: Runtime speed up distributions for LAPHard

Table 5: Relative gap (%) distributions for LAPHard

Learner	Pruning		Quantiles		Mean
		0.05	0.5	0.95	
oracle	High	-0.24041	0.00000	0.00000	-0.06477
oracle	Low	-0.24178	0.00000	0.24294	-0.01079
histogram	High	-0.12548	0.29598	0.42804	0.21083
histogram	Low	-0.29987	0.05789	0.33848	0.02245

Learner	Pruning	Quantiles			Mean
		0.05	0.5	0.95	
oracle	Low	0.55	1.09	6.81	2.87
oracle	High	0.78	2.31	36.65	9.40
histogram	Low	0.47	1.02	7.15	1.98
histogram	High	0.45	1.28	9.36	2.89

Table 6: Runtime speed up distributions for FCN

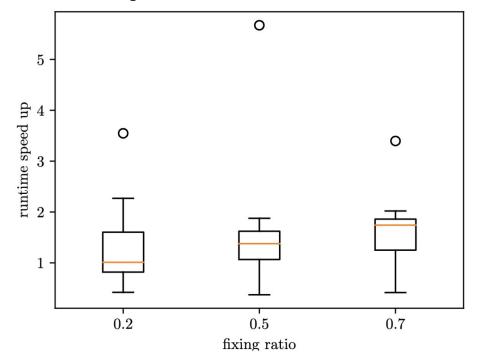
Table 7: Relative gap (%) distributions for FCN

Learner	Pruning		Quantiles		Mean
		0.05	0.5	0.95	
oracle	Low	-0.22575	0.00000	0.35587	0.01367
oracle	High	-0.09047	-0.00000	0.06723	-0.01458
histogram	Low	-0.25409	0.00109	0.38701	0.05700
histogram	High	-0.01091	0.39780	1.43325	0.53195

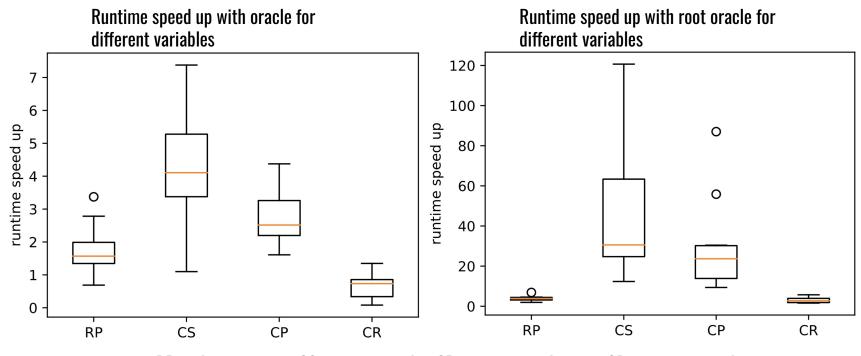
Conclusion: There is no free lunch

Oracle on LPP

Runtime speed up with oracle for different fixing ratios



Oracle on the LPP



RP: railcar - pattern, CS: container - slot, CP: container - platform, CR: container - railcar

Conclusion: there is no free lunch

- Demonstrated the importance of a reliable ML baseline; we can often do more with less.
- Significant speed up with marginal quality loss (<1%). With high pruning: 5 to 7x speed up on LAP, 2 to 3x on FCN.
- Revealed that the potential speed up is not as interesting on a non-graph based problem (LPP).
- Paths forwards:
 - More features and data to meaningfully outperform the ML baseline
 - Restarting strategy: pruning the problem before presolve