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Background
● Our goal is to accelerate the discovery of solutions for real large-scale CO problems that cannot be efficiently solved using 

current general-purpose solvers. 

● Our methodology uses data driven tools within the B&B to estimate the optimal solution.

● Learned heuristic: It produces approximate solutions to get significant speed ups. 

● During the last year, we experimented with different applications to figure out how well our method would generalize.

● Key results:

○ Marginal quality loss: Below 1% relative gap

○ LAP: 5 to 7x runtime speed up on average

○ Network design: 2 to 3x runtime speed up on average
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Introduction:
LAP



Basic vocabulary



Locomotive assignment problem (LAP)  
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Locomotive assignment problem (LAP)

Assignment of consist to train Flow conservation 



Motivations for ML

Large datasets available03 Scales with data

Need to be solved on a 
recurring basis 02 Model is reusable 

Compute time can be high01 Fast inference time 
Compute is moved offline 



Why a large speed up matters?

Simulation03
Solve instances within a simulator (e.g., 
relocation algorithm in a taxi fleet 
simulator)

Operational level02 Solve instances with last-minute changes

Strategic or tactical level01 Solve large set of instances at the 
exploratory phase of a project



Introduction: 
LPP 



Loading pattern problem (LPP)



Loading pattern problem (LPP)

Assignment of pattern to railcar Weight capacity constraint



Introduction: 
Network 

design 



Fixed-charge network design (FCN)

● Challenging
● Open source dataset available (Canad)
● Benchmarks available
● Similar structure to the LAP 



Fixed-charge network design problem (FCN)

Capacity constraint Flow conservation 



Literature 
review:

A story of trade-offs



Literature review

Method classification
ML-augmented vs End-to-End

1 Notable trade-offs
Expressiveness vs Sample 
efficiency

2

Underrated ideas
ML baselines and training 
cost discount

3



Noteworthy surveys
- Lodi, A., & Zarpellon, G. (2017). On learning and branching: a survey. Top, 25(2), 207-236.

- Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: a 

methodological tour d’horizon. European Journal of Operational Research, 290(2), 405-421.

- Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end constrained optimization 

learning: A survey. arXiv preprint arXiv:2103.16378.



Machine Learning and Constrained Optimization

Kotary, J., Fioretto, F., Van Hentenryck, P., & Wilder, B. (2021). End-to-end 
constrained optimization learning: A survey. arXiv preprint arXiv:2103.16378.



Learning and branching 
Motivation:

The inclination to use heuristics to deal with 
the branch-and-bound decisions are justified 
by the poor understanding from the 
mathematical standpoint. There is no deep 
understanding of the theory underneath 
branching.

Tang, Y., Agrawal, S., & Faenza, Y. (2020, November). Reinforcement learning 
for integer programming: Learning to cut. In International conference on machine 
learning (pp. 9367-9376). PMLR.

Lodi, A., & Zarpellon, G. (2017). On learning and 
branching: a survey. Top, 25(2), 207-236.



Specificity vs Learning for CO
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Notable trade-offs
Expressiveness vs sample 

efficiency



ML Models for CO



Problem instances



Hybridation goals

Donti, P. L., Roderick, M., Fazlyab, M., & Kolter, J. Z. (2020). Enforcing robust control guarantees 
within neural network policies. arXiv preprint arXiv:2011.08105.



Underrated ideas
ML baselines and training 

cost discount



Why a good ML baseline matters?

“By re-implementing their algorithm with a focus on 
code quality and extensibility, we show that the 
graph convolution network used in the tree search 
does not learn a meaningful representation of the 
solution structure, and can in fact be replaced by 
random values.”

Böther, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., & Friedrich, T. 
(2022). What's Wrong with Deep Learning in Tree Search for 
Combinatorial Optimization. arXiv preprint arXiv:2201.10494.

Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with 
graph convolutional networks and guided tree search. Advances in 
neural information processing systems, 31.



Why training cost discount?
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Methodology:
Entropy as a 

baseline



Methodology

Mathematical formulation
B&B and user cuts 

1 Learning tools
Entropy and classifiers

2

Workflows
Training, validation and 
testing

3



Mathematical formulation



Mathematical formulation

Special Ordered Sets of type 1 (SOS1 or S1) are a set 
of variables, at most one of which can take a 
non-zero value, all others being 0. 

the set of classes available

the set of objects in the instance

binary variable that models the assignment of the object to the class



B&B integration



B&B integration: Code example



User cut specification
Action: adding a constraint to limit 
the search space

https://jump.dev/JuMP.jl/stable/

https://jump.dev/JuMP.jl/stable/


Learning tools
Entropy and classifiers



Minimize entropy to reduce assignment risks



Empirical motivation for entropy
Entropy distribution for a LAP instance



ML baseline: Histogram



Supervised learning model
Why Random Forest (RF) vs DNN? 

- Little tuning required

- Small footprint 

- No GPU required 

- Reaches good accuracy while 
trained on a single instance

- No gradient available 



Online features
- Feature vector updates at every node

- Contains relevant data from the visited solutions

the class of the object at the current iteration



Workflows
Training, validation and 

testing



Data generation
Notes: 

● LAP uses historical 
data from CN

● FCN uses Canad 
instances

● LPP uses synthetic 
instances



Training



Validation/Simulation



Policy



Testing



Metrics
Primal Integral (PI) Runtime speed up



Metrics 

Relative gap03

Runtime speed up02

Primal integral ratio (PIR)01
It takes into account the whole solution 
process by computing the integral of the 
primal gap over time.

Relative solution time for the best solution 
found within the time limit. 

Gap relative to the best solution found by 
CPLEX. 



Experimental 
results:

What speed up can we expect?



Experimental results

Preliminary results
Optimality gaps and  accuracy

1 Scatter plots
Relative gap vs speed up

2

Summary results
Quantiles and averages

3









Scatter plots
Speed up vs relative gap



Oracle

How?

What? Agent that knows the best known 
solution.

Why?

Collects the best solution from 
baseline and applies constraints 
accordingly.

It gives an estimation of the best case 
scenario. 











Summary 
results

Quantiles and averages









Conclusion:
There is no free 

lunch 🥙 



Oracle on LPP
Runtime speed up with oracle for different 
fixing ratios 



Oracle on the LPP
Runtime speed up with oracle for 
different variables 

Runtime speed up with root oracle for 
different variables 

RP: railcar - pattern, CS: container - slot, CP: container - platform, CR: container - railcar 



Conclusion: there is no free lunch 🥙
- Demonstrated the importance of a reliable ML baseline; we can often do more with less. 

- Significant speed up with marginal quality loss (<1%). With high pruning: 5 to 7x speed up on LAP, 2 to 3x on FCN. 

- Revealed that the potential speed up is not as interesting on a non-graph based problem (LPP). 

- Paths forwards:

- More features and data to meaningfully outperform the ML baseline  

- Restarting strategy: pruning the problem before presolve 


