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Machine Learning for High-Stakes Decision Making

Transparency

When training a machine learning algorithm,
accuracy of its predictions matters, as does the transparency

Transparency is desirable [Freitas, 2014, Rudin et al., 2022], e.g., in medical
diagnosis [Ustun and Rudin, 2016];

It is required by regulators for models aiding, e.g., credit scoring [Baesens et al.,
2003] and judicial [Ridgeway, 2013] decisions;

From 2018 onwards the EU extended this requirement by imposing the so-called
right-to-explanation in algorithmic decision making [European Commission,
2020, Goodman and Flaxman, 2017];

There is a growing number of Explainable Artificial Intelligence (XAI) tools,
Ghorbani and Zou [2020], Gunning and Aha [2019], Holter et al. [2018], Miller
[2019]
https://www.darpa.mil/program/explainable-artificial-intelligence

https://www.microsoft.com/en-us/research/publication/

interpretml-a-unified-framework-for-machine-learning-interpretability/

https://community.fico.com/s/explainable-machine-learning-challenge
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Machine Learning for High-Stakes Decision Making

Enhancing transparency

Focus on the data at hand
Sparseness (fewer features):
Atamtürk and Gomez [2019], Benítez-Peña et al. [2019, 2020, 2021, 2022], Bertsimas et al. [2016],
Blanquero et al. [2021b], Carrizosa et al. [2022c,f], Fountoulakis and Gondzio [2016], Kenney et al. [2021],
Maldonado et al. [2014], Rinaldi et al. [2010], Rinaldi and Sciandrone [2010]
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Machine Learning for High-Stakes Decision Making

Enhancing transparency

Focus on the data at hand
Finding prototypes (representative individuals):
Carrizosa et al. [2007, 2021d, 2022a,d], Hart [1968], Wilfong [1992]
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Machine Learning for High-Stakes Decision Making

Enhancing transparency

Focus on the model itself
Enhancing interpretability of black-box methods:
Support Vector Machines (SVM), Deep Learning (DL) and even Random Forests
(RF) are seen as black-boxes, and there have been many efforts to enhance their
interpretability
Bénard et al. [2019], Carrizosa and Romero Morales [2013], Carrizosa et al. [2010, 2011, 2016, 2017,
2021a,b,c, 2022e], Chevaleyre et al. [2013], Golea and Marchand [1993], Lawless et al. [2022], Li et al.
[2017], Ustun and Rudin [2016]
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Machine Learning for High-Stakes Decision Making

Enhancing transparency

Focus on the model itself
Building easy-to-understand structures such as rules and trees:
Baesens et al. [2003], Blanquero et al. [2021a, 2020, 2022a], Bertsimas and Dunn [2017], Carrizosa et al.
[2021d,e], Dash et al. [2018], D’Onofrio et al. [2022], Martens and Provost [2014], Orsenigo and Vercellis
[2003, 2004]
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Machine Learning for High-Stakes Decision Making

High-stakes decision-making

When high-stakes decisions are taken, new demands on the machine learning
algorithm arise:

Fairness, to avoid that the algorithm discriminates against sensitive groups,
e.g., age, gender, race, religion, socio-economic status, migrants

Media has reported many of these cases, e.g., Compas, Amazon, A-Levels in the
UK, social benefits in The Netherlands

Local and counterfactual explanations, to understand how the algorithm
arrives at individual predictions and to give feedback on how the algorithm
would have arrived to the desired prediction

There is a focus on the impact of the algorithm at the individual/instance level,
e.g., the convicted person, the online customer, the teenager, the social benefits
applicant
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Machine Learning for High-Stakes Decision Making

Fairness

There is a growing literature addressing fairness concerns [Aghaei et al., 2019, Besse
et al., 2022, Carrizosa et al., 2022b, Mehrabi et al., 2022, Zafar et al., 2017a,b]

Important!!! It is not enough to check that these sensitive features are not used
directly by the model, as they can be used indirectly through other features

For a group of sensitive observations, we may want, for instance, to

control accuracy in the sensitive group, or

ensure that accuracy in the sensitive group is close to that in the whole group, or

ensure that predictions in the sensitive group resemble to those in the whole
group, e.g., the mean is similar
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Machine Learning for High-Stakes Decision Making

Local explanations

Local explanations help to understand the role of each feature in the prediction
made for an individual [Ghorbani and Zou, 2020, Gunning and Aha, 2019, Holter
et al., 2018, Miller, 2019]

If the model is linear,
y = α + β>x,

we can easily provide local explanations

if xj increases by 1 unit, then y increases by βj units,

which does not depend on the individual at hand

Nowadays, it is common in XAI to provide the explanations from a surrogate of
the black-box model [Lundberg and Lee, 2017, Lundberg et al., 2020, Ribeiro
et al., 2016], while there are fewer approaches that can provide those by design
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Machine Learning for High-Stakes Decision Making

Counterfactual explanations

For a given individual, which features need to change to get a desired prediction

Your loan has been denied. Had your salary been 30k instead of 25k and had you
had 2 accounts open instead of 4, your loan would have been accepted

The work in this area is recent [Forel et al., 2022, Guidotti, 2022, Karimi et al.,
2020, Maragno et al., 2022, Wachter et al., 2017]
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Randomized Optimal Classification and Regression Trees
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Randomized Optimal Classification and Regression Trees

Classification and Regression Trees

’+’ (good payers) vs ’−’ (bad payers)

Node 0

age≤ 50

Node 1

salary≥ 30

Node 2 (+)

salary< 30

Node 3 (−)

age> 50

Node 4 (−)

See our recent review on optimal trees
Carrizosa et al. [2021], Mathematical optimization in
classification and regression trees, TOP, 29(1):5-33.
In Open Access

Mixed Integer Linear Optimization

Aghaei et al. [2020]

Bertsimas and Dunn [2017]

Firat et al. [2020]

Günlük et al. [2021]

Other paradigms

CP, Verhaeghe et al. [2019]

DP, Demirović et al. [2022]

SAT, Narodytska et al. [2018]
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Randomized Optimal Classification and Regression Trees

Optimal Randomized Classification and Regression Trees

In Blanquero et al. [2020, 2021a, 2022a,b], we propose
Optimal Randomized Classification and Regression Trees:

We model probabilistic (as opposed to deterministic) splitting rules

We develop a Continuous Optimization formulation

With:

Accuracy and sparsity tradeoff

Tabular and functional data

Fairness constraints

Local and counterfactual explanations by design
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Randomized Optimal Classification and Regression Trees

Optimal Randomized Regression Trees

A sample {(xi , yi )}N
i=1 ,where xi ∈ Rp and yi ∈ R.

A maximal binary tree of depth D, with branch t ∈ τB and leaf t ∈ τL nodes.

Oblique splits:
ajt coefficient of predictor variable j in the oblique cut at branch node t ∈ τB ,
µt intercept at the oblique cut at branch node t ∈ τB .
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Randomized Optimal Classification and Regression Trees

Optimal Randomized Regression Trees

Probabilistic cuts, defined through F (·), the smooth CDF of a univariate
continuous random variable

Probabilities

pit (a·t , µt ) = F

 1
p

p∑
j=1

ajt xij − µt

 , i = 1, . . . ,N, t ∈ τB .

Pit (a,µ) ≡ P (xi ∈ t) =
∏

tl∈NL(t)

pitl

(
a·tl , µtl

) ∏
tr∈NR (t)

(
1− pitr (a·tr , µtr )

)
, i = 1, . . . ,N, t ∈ τL.
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Randomized Optimal Classification and Regression Trees

Optimal Randomized Regression Trees (ORRT)

The ORRT model

minimize
(a,µ,ã,µ̃)∈R(p+1)(|τB |+|τL|)

1
N

N∑
i=1

(∑
t∈τL

Pit (a,µ) (ã>·t xi + µ̃t )− yi

)2
(MSE)

+ λlocal
p∑

j=1

‖(aj·, ãj·)‖1 (local sparsity)

+ λglobal
p∑

j=1

‖(aj·, ãj·)‖∞ (global sparsity)

There exists an equivalent nonlinear smooth formulation
This speaks favorably about the explainability of our tree model

There are no decision variables directly linked to the observations
This speaks favorably about the scalability of our approach
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Randomized Optimal Classification and Regression Trees

Tradeoff between accuracy and sparsity for ailerons dataset
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Randomized Optimal Classification and Regression Trees

Local explanations

Let (a∗,µ∗, ã∗, µ̃∗) be the optimal solution. For an incoming individual with predictor
vector x, the expected outcome is equal to

x→ Π(x) :=
∑
t∈τL

Px t (a∗,µ∗) (ã∗>·t xi + µ̃∗t ),

where Px t (·, ·) is defined similarly to Pit (·, ·) with x replacing xi .

The smoothness of Π(·) is crucial to be able to provide local explanations to ORRT.

Local explanations
Thus, the matrix of partial derivatives(

∂Π

∂xj
(x0)

)
j=1,...,p

gives information on the sensitivity of the outcomes Π around x0.
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Randomized Optimal Classification and Regression Trees

Illustration of local explanations in ORRT in the housing dataset

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT

60

40

20

0

20

Relative error

38.9286

0.0000

Figure: The housing dataset: local explanations for ORRT with λlocal = 0 and λglobal =
22

13
, with

MSE = 15.5654 and R2 = 0.8156.
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Randomized Optimal Classification and Regression Trees

Detecting critical intervals for functional data with S-ORRT-FD
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Randomized Optimal Classification and Regression Trees

Detecting critical intervals for functional data with S-ORRT-FD
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Optimized Counterfactual Explanations for Score-Based Classifiers
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Optimized Counterfactual Explanations for Score-Based Classifiers

Minimum Cost Counterfactual Explanations

The input
The feature space X ⊂ RJ for a K -class problem

A classifierM : X −→ {1, . . . ,K}

An instance x0 seeking an explanation on how to change to x |M(x) = k+

I M(x) = k+ can mean getting a good credit score, getting social benefits, ...

Minimum Cost Counterfactual Explanations
The problem

Find x, the counterfactual to x0, of minimum cost such that x is classified in k+
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Optimized Counterfactual Explanations for Score-Based Classifiers

Minimum Cost Counterfactual Explanations

In Carrizosa et al. [2021a, 2022a], we propose
a unified approach to counterfactual explanations for score-based classifiers such as
Logistic Regression, Random Forests, Support Vector Machines, or XGBoost

Controlling sparsity

Modeling, e.g., actionability and plausibility constraints

Dealing with both tabular as well as functional data

Individual and collective explanations
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Optimized Counterfactual Explanations for Score-Based Classifiers

Minimum Cost Counterfactual Explanations

Counterfactual explanation for x0 to be classified in class k+

minimizex C(x , x0)

s.t. fk+(x) ≥ fk (x) ∀k = 1, . . . ,K k 6= k+

x ∈ X 0

where

fk : RJ → R is the score function of classifierM for class k = 1, . . . ,K

X 0 ⊂ RJ actionability and plausibility constraints
I polyhedron with some integer coordinates

a cost function C(·, ·) : RJ × RJ → R
I `0, `1, `2, . . .
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Optimized Counterfactual Explanations for Score-Based Classifiers

The score-based classifier is an Additive Tree Model

Data from tree t , t = 1, . . . ,T , in the ATM

weight w t ≥ 0

set of leaves Lt

sets of splits Left(t , l) and Right(t , l) for
l ∈ Lt

threshold value cs and feature used v(s) in
each split node s, s ∈ Left(l, t) ∪ Right(l, t)

Lt
k subset of leaves in t whose output is

class k = 1, . . . ,K
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Optimized Counterfactual Explanations for Score-Based Classifiers

The score-based classifier is an Additive Tree Model

Decision variables

x ∈ RJ counterfactual

z t
l ∈ {0, 1} indicates whether the

counterfactual instance x ends in
leaf l ∈ Lt or not, t = 1, . . . ,T

Score function for class k
T∑

t=1

w t ·
{

1 if x predicted in class k in tree t
0 otherwise

}
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Optimized Counterfactual Explanations for Score-Based Classifiers

Counterfactual Explanations for ATM models

minimizex,z C(x , x0)

s.t. xv(s) −M1(1− z t
l ) + ε ≤ cs ∀s ∈ Left(l, t) ∀l ∈ Lt ∀t = 1, . . . ,T

xv(s) + M2(1− z t
l )− ε ≥ cs ∀s ∈ Right(l, t) ∀l ∈ Lt ∀t = 1, . . . ,T∑

l∈Lt

z t
l = 1 ∀t = 1, . . . ,T

T∑
t=1

w t
∑

l∈Lt
k+

z t
l ≥

T∑
t=1

w t
∑
l∈Lt

k

z t
l ∀k = 1, . . . ,K k 6= k+

x ∈ X 0

z t
l ∈ {0, 1} ∀l ∈ Lt ∀t = 1, . . . ,T

C(x ,x0) = λ0 `0(x − x0) + λ2 `
2
2(x − x0)

An equivalent Mixed Integer Convex Quadratic Model with linear constraints

If λ2 = 0, an equivalent MILP formulation
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Optimized Counterfactual Explanations for Score-Based Classifiers

Numerical illustration for housing dataset

Counterfactual explanation for 1 instance

Figure: Random Forest for the housing dataset: To k+ = +1 with C = 0.01`0 + `22
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Optimized Counterfactual Explanations for Score-Based Classifiers

Numerical illustration for housing dataset

Counterfactual explanation for 10 instances

Figure: Random Forest for the housing
dataset: To k+ = +1 with C = 0.01`0 + `22

Figure: Random Forest for the housing
dataset: To k+ = −1 with C = 0.01`0 + `22
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Optimized Counterfactual Explanations for Score-Based Classifiers

Counterfactual explanations for a collective of individuals

Counterfactual explanations for a collective of individuals
A collective of individuals, each of them requires a counterfactual explanation

If the problem is separable, then use the single-instance model (in previous slides)

The problem is not separable, e.g., when controlling `global
0 , i.e., the sparsity across

all counterfactual explanations
I useful for the modeler to detect important features to classifierM

If the problem is not separable, we propose a novel formulation in which the
linking constraints are modeled
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Optimized Counterfactual Explanations for Score-Based Classifiers

Numerical illustration for housing dataset

Counterfactual explanation for 10 instances

SEPARABLE

Figure: Random Forest for the housing
dataset: To k+ = +1 with C = 0.01`0 + `22,
separable case

NON-SEPARABLE

Figure: Random Forest for the housing

dataset: To k+ = +1 with C = 0.1`global
0 + `22,

non-separable case
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Optimized Counterfactual Explanations for Score-Based Classifiers

Functional data and counterfactual explanations

Counterfactual explanations: convex combinations of prototypes

Cost: λ0`0 + λDTWDTW, where DTW stands for Dynamic Time Warping

Figure: Random Forest for the ItalyPowerDemand dataset: To k+ = +1 with C = DTW.
Different values of Bmax, i.e., the number of prototypes used for the convex combination,
have been imposed.
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Some thoughts

Outline

1 Machine Learning for High-Stakes Decision Making

2 Randomized Optimal Classification and Regression Trees

3 Optimized Counterfactual Explanations for Score-Based Classifiers

4 Some thoughts
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Some thoughts

Some thoughts

Transparency by design that can model the loss in accuracy

Counterfactual explanations to understand the machine learning model

Counterfactual explanations to understand decision making models
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You are kindly invited to
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Some thoughts

Thank you very much!
E: drm.eco@cbs.dk H: doloresromero.com T: @DoloresRomeroM

RG: https://www.researchgate.net/profile/Dolores-Romero-Morales
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