

Improving the Efficiency of Cancer Treatment Logistics through Predictive and Prescriptive Analytics

LOUIS-MARTIN ROUSSEAU

Healthcare systems

One person is diagnosed with cancer every 3 minutes in Canada, 20 seconds in USA.

One person dies from cancer every 7 minutes in Canada, 1 minute in USA.

First cause of mortality in Canada (30%): 45% of Canadian will develop cancer 5 year survivability 66%

Ever increasing of new cancer cases: 12% within 4 years Aging of population; Demographic growth.

How to treat all these patients while keeping excellent care ?

What are your treatment options ?

About 50% of cancer patients will receive radiotherapy

Tools

Internal

External

Vickers 6 Prototype Newcastle-on-Tyne 1960

Teams

	Chemotherapy	Radiotherapy				
Prescribes	Oncologist	Radiation Oncologist				
Prepares	Pharmacist	Physicist				
Delivers	Nurse	Therapist				

Care Trajectory

Care Trajectory in details

CHAIRE DE RECHERCHE DU CANADA EN ANALYTIQUE ET LOGISTIQUE DE SOINS DE SANTÉ

HANALOG

-0 Table Table Table

Important steps

Simulation:

- Uses: CT, MRI, PET-CT
- Used for treatment planning purposes
- 3D model of the human body

Treatment Planning

- Calculates radiation deposition in the human body
- Multi-criteria optimization solver
- Server farm, GPU calculations, etc.

Plan approval

Linear accelerator

- mm accuracy
- 100x more powerful than a radiology X-ray

CHAIRE DE RECHERCHE DU CANADA EN ANALYTIQUE ET LOGISTIQUE DE SOINS DE SANT HANALOG

7

(Q1) when to book a patient ?

Considering existing calendar...

... and patient priorities

Palliative	Curative 1	Curative 2
< 3 days	< 14 days	< 28 days

Different possible approaches

Stochastic Optimization

 $\min_{\substack{x \in \mathbb{R}^n \\ \text{subject to}}} g(x) = c^T x + E[Q(x,\xi)]$ Ax = b $x \ge 0$

Markov Decision Process

Online Optimization

RE DE RECHERCHE DU CANADA ER

RT cancer patient booking

- Online stochastic combinatorial optimization:
 - 1. For each solution, we compute :
 - 1. A utilization cost (by day and by linac) for a time slot;
 - 2. We choose the appointment of minimum cost:
 - 1. Waiting time cost (depending of the priority);
 - 2. Expected utilization cost.
- Booking model -> Dantzig-Wolfe decomposition;
- Uncertainties -> Benders decomposition.

Treatment planning fix to 7 days ... for now

Stochastic Programming Model

$$\min\sum_{i\in S_j} c_{ij} x_{ij} + \mathbb{E}_{\omega\in\Omega_j} \left[\sum_{l\in\mathcal{P}^{\omega}} \sum_{i\in S_l} c_{il} y_{il}^{\omega} + \sum_{k\in H} \sum_{m\in M} c^o z_{mk}^{\omega}\right]$$

subject to:

AIRE DE RECHERCHE DU CANADA EN ALYTIQUE ET LOGISTIQUE DE SOINS DE SANTÉ

HANALOG

$$y_{il}^{\omega} \in \{0, 1\}, \qquad \forall l \in \mathcal{P}^{\omega}, \forall i \in S_l, \forall \omega \in \Omega_j$$

12

POLYTECHNIQUE 🛞

Initial Results

	Due date violations			Ανε	erage waiting	Utilization	Overtime	
	>3	>3 >14 >28		Palliative	Curative 1	Curative 2		
CICL	14	16	0	2,07	14,38	12,98	88,3%	44
OSCO - 1	9	6	0	1,05	10,57	15,98	88,0%	6

CICL real data:

- 170 patients ;
- 120 days;
- 2 linacs with 23 slots.

Legrain A, Fortin MA, Lahrichi N, Rousseau L-M (2015) "Online Stochastic Optimization of Radiotherapy Patient Scheduling", *Healthcare Management Science*, 18, 110-123.

(Q2) Will the patients be ready?

Appointment booking

Unknown dosimetry duration

Preparation completed

PreparationTasks

Best feasible appointment

Online stochastic optimization:

- 1. For each solution, we compute :
 - 1. A utilization cost (by day and by linac) for a slot;

- 2. We choose the appointment of minimum cost:
 - 1. Waiting time cost (depending of the priority) ;
 - 2. Expected utilization cost.

New Results

	Cancellations	Due date (in days)			Avera	ge waitii	Overtime		
		>3	>14	>28	>3	>14	>28		
CICL	230	373	104	0	3,45	12,58	12,63	111	
OSCO 1	107	335	67	0	1,05	10,57	15,98	19	
OSCO 2	1	326	119	0	3,23	14,04	18,43	8	

CICL real data:

- 1529 patients ;
- 248 days;
- 4 linacs with 29 slots.

A prediction-based approach for online dynamic radiotherapy scheduling

Tu-San Pham, Antoine Legrain, Louis-Martin Rousseau

CHUM - CENTRE HOSPITALIER DE L'UNIVERSITÉ DE MONTRÉAL

10 linacs

5 generics 4 specialized 1 cyberknife 4400 consultations

3500 new patients

40.000 fractions

(2019)

JGRAY

https://www.graysuite.com/

CHUM - 2019

Objective: minimizing overdue treatment and waiting time

Online Scheduling with a Greedy Heuristic

• a curative patient (P4) with 3 sessions, 10 time slots each

Looking for the first eligible date that can accommodate the whole treatment

Batch Scheduling

Palliative patients: schedule at arrival

$$x_{tl}^{i} = \begin{cases} 1 & \text{if patient } i \text{ receives their treatment on day } t, \text{ linac } l \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{l} \text{minimize} \quad \sum_{i \in \hat{\mathcal{P}}} \sum_{t \in \mathcal{T}, t > a_i} \sum_{l \in \mathcal{L}} \omega_1(t - a_i) log(t - a_i + 1) x_{tl}^i \\ + \sum_{i \in \hat{\mathcal{P}}} \sum_{t \in \mathcal{T}, t > d_i} \sum_{l \in \mathcal{L}} \omega_2(t - d_i) log(t - d_i + 1) x_{tl}^i \end{array} \quad \begin{array}{l} \text{waiting time} \end{array}$$

MIP MODEL

Offline Scheduling – with Perfect Information

Prediction-based Scheduling

- 1 linac, capacity 120 time slots
- a curative patient with 3 sessions, 10 time slots each

Looking for the first eligible date that can accommodate the whole treatment

.

How do we predict a "good" starting date for a patient?

Training the Regression Model for Scheduling

Data Generation

Patient arrivals: Poisson distribution

Treatment plans: based on historical data

Instance setting

- Number of linacs
- Arrival rate (average daily number of patients)

For each instance setting: 500 instances

- 400 for training the regression model
- 100 for testing

PREDICTIVE MODELS

		Training time	Trai	ining	Testing		
		fraining time	MSE	MAE	MSE	MAE	
	MLP	116.19	3.45	1.32	3.33	1.29	
	SGD	0.35	6.06	1.84	5.61	1.77	
	Lasso	0.44	5.97	1.81	5.52	1.74	
	ElasticNet	0.25	6.26	1.85	5.83	1.8	
	SVR	43.16	3.19	1.07	3.12	1.07	
D	ecision Tree	0.84	2.41	0.48	6.59	1.4	
Ra	andom forest	51	0.38	0.39	2.64	1.03	
	XGBoost	7.71	0.96	0.66	2.44	0.97	

SCHEDULING STRATEGIES

	Scheduling strategy	Scheduling palliative patients	Scheduling curative patients		
	Offline	Scheduling once with all future arr	ivals known in advance		
Batch scheduling - Online scheduling -	Daily	Every day	Every day		
	Weekly	Every day	Every Friday		
	Daily greedy	Every day	Every day		
	Greedy	At admission	At admission		
	Prediction-based	At admission	At admission		

4 LINACS

Arrival rate of 5.0

HANALOG

Arrival rate of 6.0

8 LINACS

CHAIRE DE RECHERCHE DU CANADA EN ANALYTIQUE ET LOGISTIQUE DE SOINS DE SANTÉ

HANALOG

Experiment on a real CHUM data

7 linacs operating 8 hours/day High fluctuation in arrival rate

• Instance setting for training: arrival rate of 10.1 patients/day

RESULTS ON THE REAL INSTANCE

Scheduling	Avg. occupancy	Waiting time (days)					Overdue time (days)				
strategy	(%)	overall	P1	P2	P3	P4	overall	P1	P2	P3	P4
online-greedy	97.45	33.02	5.14	6.13	43.67	44.02	44.02	5.14	3.91	29.74	16.18
daily-greedy	97.51	32.91	6.00	6.23	43.48	43.80	17.71	6.00	3.99	29.58	16.00
daily	97.72	33.53	9.79	9.63	42.87	43.44	18.25	9.79	7.15	28.93	15.65
weekly	97.61	33.04	7.86	7.72	42.42	44.10	17.76	7.86	5.37	28.51	16.19
prediction-based	97.14	32.93	3.29	4.05	44.21	44.94	17.69	3.29	1.99	30.22	16.96

Explainability

Explainability

IN THEORY THERE IS NO DIFFERENCE BETWEEN THEORY AND PRACTICE IN PRACTICE THERE IS **Gogi Berra**

Spin-out of Gray Oncology Solution

QUE ET LOGISTIQUE DE SOINS DE SANTI

ANALOG