Hybrid AI 2.0, a case study: Numerical simulation for PDEs

Marc Schoenauer Equipe A&O/TAU, INRIA, LISN, CNRS et Université Paris-Saclay

Data Science departement day Sept. 12., 2022

Context

- Alan Turing (1950), *Can machines think?*
- Dartmouth wkp (1956),

intelligence as a sequence of logical operations

- ... symbolic / subsymbolic "debate"
- **Deep Learning** coming of age (2012+): a universal tool?
 - seemingly hitting a glass ceiling (now)

Deep Hybridization is the only way to move forward

AI as a goal

AI as a tool

Good Old Numerical Simulation of PDEs

Conductivity σ

Finite Element Method

Computed current u

$$\nabla \cdot \left(\sigma(x) \nabla u(x) \right) = 0, \qquad x \in \Omega \subset \mathbb{R}^2$$
$$u(x) = u_0(x), \qquad \qquad x \in \partial \Omega.$$

An image recognition problem?

Hybrid AI 1.0

Conductivity σ

Deep Neural Network

Computed current

$$\nabla \cdot \left(\sigma(x) \nabla u(x) \right) = 0, \qquad x \in \Omega \subset \mathbb{R}^2$$
$$u(x) = u_0(x), \qquad x \in \partial \Omega.$$

Soft Body Deformation Stéphane Cotin, Mimesis

Need patient-specific real-time simulation of laparoscopy

- Liver is hyper viscoelastic and anisotropic
- Several complex PDEs for soft tissues
 - anyway an approximation
- Material identification
- Patient-specific geometry
 - Not a big issue, but time consuming
- Boundary conditions are essential
 - but difficult to obtain from images
- Need less than 3mm error
- in less than 50ms per image

Mendizabal, Brunet and Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.

Soft Body Deformation

Bottleneck: real-time simulation

Replace FEM simulation by a Deep Network Supervised learning (regression) of simulation results

800 exemples, standard MSE loss

Soft Body Deformation

Problem solved?

- Error w.r.t. FEM below $10\% \rightarrow$ sufficient for surgeons
- 300 times faster than FEM \rightarrow sufficient for real time surgery
- But single patient \rightarrow only need generalization w.r.t. external forces
- Nothing there to learn for AI ?

Soft Body Deformation

Problem solved?

- Error w.r.t. FEM below $10\% \rightarrow$ sufficient for surgeons
- 300 times faster than FEM \rightarrow sufficient for real time surgery
- But single patient \rightarrow only need generalization w.r.t. external forces
- Nothing there to learn for AI ?

Multigrid V-cycle architecture Briggs et al., Multigrid Tutorial, 2000

Toward Hybrid AI 2.0

- Performance
 - \circ Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - $\circ~$ Few shot learning, OoD generalization \rightarrow Meta-learning
 - $\circ \quad \text{Accuracy} \rightarrow \text{Data-driven inference as pre-processor}$
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Toward Hybrid AI 2.0

- Performance
 - Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - $\circ~$ Few shot learning, OoD generalization \rightarrow Meta-learning
 - $\circ \quad \text{Accuracy} \rightarrow \text{Data-driven inference as pre-processor}$
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Convolutional Graph Neural Networks

- The local "convolution" needs to accept any number of inputs, and be permutation-invariant
- The global mapping must be permutation equivariant

Convolution operation on Regular grid Graph domain

MoNet* convolution operator

- Given node features x_i and edge features e_{ii}
- Computes node feature values from trainable matrix Θ_k and kernels w_k

$$\mathbf{x}'_{i} = \frac{1}{|\mathcal{N}(i)|} \sum_{j \in \mathcal{N}(i)} \frac{1}{K} \sum_{k=1}^{K} \mathbf{w}_{k}(\mathbf{e}_{ij}) \odot \boldsymbol{\Theta}_{k} \mathbf{x}_{j}$$

(*) Monti, F., et al. (2016): Geometric deep learning on graphs and manifolds using mixture model CNNs, CVPR.

MoNet for PDEs

E.g., solving some nonlinear Poisson equation

 $-\nabla((1-u(x)+u(x)^2)\cdot\nabla u(x)) = f(x) \text{ in } \Omega \text{ with } u(x)|_{\partial\Omega} = 1$

- A mesh is a graph
- Edge features: e_{ij} = p_j p_i
 where p_i is the coordinate vector of node i
- Node features:

- value of source term at node i: f(p_i)
- boundary indicator (1 if node i on the boundary, 0 otherwise)

Experimental conditions

- 42 000 examples, varying both domain Ω and source function f
- FEniCSx used for simulations and mesh generation
- Number of nodes of fine meshes: ~1000
- 12-fold cross-validation,
- Loss = Mean Absolute Error w.r.t. FEM results on finest mesh
- Wilcoxon signed-rank test with 95% confidence

Hyperparameters

- Number of layers, of channels for the NNs
- Number of nearest neighbors for up- and down-sampling
- Learning rate schedule
- Batch size, choice of optimizer and its parameters
- Initialization method :
- Early stopping (with validation set)

2-4, 32-64 6 step decay am, default param. Gloriot

Generalisation Results

Training set: 30 vertices, ~1000 elements per mesh

Le

		GNN	CNN
Same distribution	Test	2.20 ± 0.16	6.14 ± 0.26
30 vertices, finer meshes	1200-1600	2.53 ± 0.17	6.55 ± 0.32
	1600-2000	3.71 ± 0.25	7.21 ± 0.41
ſ	20 vertices	2.39 ± 0.18	5.72 ± 0.39
ss vertices, ~1000 elements per mesh	10 vertices	3.56 ± 0.31	6.11 ± 0.54
	5 vertices	5.29 ± 0.41	6.40 ± 0.72

Inference Computational Cost

- Inference time for solving 5000 sample PDEs
 - By batches of 100 on one GPU GTX 1080Ti for learned MGX models
 - Sequentially by FEniCSx on a Intel(R) Xeon(R) Silver 4108 CPU

Toward Hybrid AI 2.0

- Performance
 - \circ Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - Few shot learning, OoD generalization \rightarrow Meta-learning
 - \circ Accuracy \rightarrow Data-driven inference as pre-processor
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Model-Agnostic Meta-Learning - MAML^(*)

- Given a set of tasks T_i and corresponding examples
- Learn a partial model f_{θ} such that
 - few examples and few gradient steps are needed

to learn θ_i^* that solves task i, forall i

• MAML++^(**) relaxes the loss over several steps

(*) Finn, Abbeel, and Levine (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. 34th ICML (**) Antoniou, Edwards, Storkey (2018). How to train your MAML. arXiv 1810.09502.

MAML++ for RANS

- Reynolds-Averaged Navier-Stokes Equations
- Single-task: U-Net GNNs
 - with limited inference domain
 - Poor generalization w.r.t. airfoil geometry
- Multi-task: One task = one airfoil

• One example = Reynolds number and Angle of Attack

MAML++ Results

10-fold cross-validation for the whole process

- Test Set 1 : same 72 training airfoils, 10 new examples each
- Interpolation Set 2 : 20 new NACA airfoils, 50 examples each
- OoD^{*} Test set : 20 thinner airfoils, 50 examples each

	MAML++	Baseline	Baseline with FineTune
Test set 1	0.0079 ± 0.0008	$\textbf{0.0071} \pm \textbf{0.0003}$	0.0071 ± 0.0003
Interpolation set	$\textbf{0.0117} \pm \textbf{0.0014}$	0.0158 ± 0.0015	0.0156 ± 0.0014
OOD set	$\textbf{0.0369} \pm \textbf{0.0028}$	0.0643 ± 0.0179	0.0601 ± 0.0155

Toward Hybrid AI 2.0

- Performance
 - \circ Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - $\circ~$ Few shot learning, OoD generalization \rightarrow Meta-learning
 - Accuracy \rightarrow Data-driven inference as pre-processor
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Sequential Data-based - FEM

Obiols-Sales, Vishnu, Malaya, et al. (2020). CFDNet: A deep learning-based accelerator for fluid simulations. ICS'20.

Toward Hybrid AI 2.0

- Performance
 - \circ Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - $\circ~$ Few shot learning, OoD generalization \rightarrow Meta-learning
 - \circ Accuracy \rightarrow Data-driven inference as pre-processor
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Power Grid simulation

PhD Balthazar Donon (I. Guyon, MS)

Input (x)Output (y)? production & consumption voltage 0 power flow

- Physics: Kirchhoff law in all lines
- Traditional approach: Newton-Raphson, but too slow

Donon, Liu, Marot, Liu, Guyon, Schoenauer (2020). Deep Statistical Solvers. NeurIPS.

The surrogate approach

- Compute solution y*(x) for many x~p
- Learn a surrogate model f_{A}

Main issue: generalization to different grid topologies

- Graph Neural Networks mandatory
 - invariance and equivariance
- Requires many y*(x)

Physics informed approach

• y*(x) can also be defined as

$$y^*(x) = rgmin_{y\in\mathcal{Y}} \ell(x,y)$$

 ℓ : violation of physical laws (Kirchhoff's laws)

• and the Holy Grail is to find

$$heta^* = rgmin_{ heta \in \Theta} \mathbb{E}_{x \sim p} \left[\ell(x, f_ heta(x))
ight]$$

- → Message Passing Graph Neural Networks
- aka Deep Statistical Solver

MPGNN in a nutshell

Power Grids Experiments

It works!

- same accuracy than Newton-Raphson
- good generalization to (not too different) topologies
- Two orders or magnitude faster ... for batches of topologies

... on small networks

Back to PDEs

PhD Matthieu Nastorg (A. Bucci, G. Charpiat, Th. Faney, MS)

strategy for incompressible Navier-Stokes equations

(*) Yushan Wang (2015). Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures. PhD thesis, LRI, U. Paris-Sud.

Deep Statistical Solver for discretized PDEs

First results

Dirichlet boundary condition

Mixed Dirichlet/Neuman boundary cond.

Metrics	Residual loss	RMSE	NRMSE	Time for LU	Time for DSS
Problem \mathbb{P}_1	9.4e-4	8.2e-3	3.e-3	2.4	1.8
Problem \mathbb{P}_2	5.0e-3	9.0e-2	8.0e-3	2.4	1.8

Open issue: number of iterations ...

Deep Equilibrium Models^(*)

• Directly solve for the fixed point

 $z^\star\,=\,\sigma(Wz^\star\,+\,Ux\,+\,b)$

- using some RootFind routine
- + approximation of the gradient
- + regularization of its norm

$$\begin{cases} z_1 = 0 \\ z_{i+1} = \sigma(Wz_i + Ux + b), \quad i = 1, \dots, k-1 \\ h(x) = W_k z_k + b_k \end{cases}$$

Deep Equilibrium Models

 $ext{DEQ}_{ heta} = ext{RootFind}(f_{ heta}(H,\,G)\,-\,H\,)$

DEQ Results

- → Hyperparameters :
 - Latent dimension : 20
 - Solver : Broyden (quasi-Newton method)
 - Tolerance forward : 1.e-6
 - Threshold forward : 600
 - Tolerance backward : 1.e-8
 - Threshold backward : 600
 - Learning rate : 0.01
 - Gradient clipping : 0.01
 - Scheduler : Reduce LR in plateau with step : 0.5
 - Jacobian spec.rad weight : 1.0
- → Total number of weights : 7241
- → Sanity check: ||D(E(U)) U||^2 around 1.e-5

Nb nodes	Residual	MSE
250-950	2.27e-3	1.06e-2

10000 training examples Avg results on 1000 test samples

Toward Hybrid AI 2.0

- Performance
 - \circ Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - $\circ~$ Few shot learning, OoD generalization \rightarrow Meta-learning
 - \circ Accuracy \rightarrow Data-driven inference as pre-processor
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Reduced Order Models

• Dynamical systems governed by

$$\frac{\partial u(x,t)}{\partial t} = g(u(x,t))$$

- Issues with numerical simulations
 - \circ small scale structures and fast events \rightarrow fine discretization
 - o stability, numerical dispersion and dissipation

• Does not scale with intrinsic dimension

Limit cycle Intrinsic dim 2

POD (aka SVD, aka PCA, ...)

• Dimension reduction to a reduced number of modes

$$\begin{array}{l} u(x,t)\approx \bar{u}=V(x)\alpha(t)\\ V\in \mathbb{R}^{n_{x}\times r}, \alpha\in \mathbb{R}^{r} \end{array} \implies \frac{d\alpha}{dt}=V^{T}g(u(x,t))\end{array}$$

• Dynamics computed from simplified solution \rightarrow error

$$\frac{d\alpha}{dt} \approx V^T g(\bar{u}) \neq V^T g(u(x,t))$$

ROM error

From Noack* equations:

(*) Noack et al. (2003), A hierarchy of low-dimensional models for the transient and post-transient cylinder wake", J. Fluid Mechanics.

Complementary Deep - ROM PhD Emmanuel Menier

• Goal: learn a correction from data:

$$\frac{d\alpha}{dt} = V^T g(u) = V^T g(\bar{u}) + f$$

- Taken's theorem \rightarrow all information can be retrieved from past trajectory
- Delay Differential Equation to aggregate information from the past in a time continuous manner:

$$rac{dx}{dt} = f(t,x,y), \qquad y(t) = \int_{-\infty}^{0} x(t+ au) e^{\lambda au} d au, \qquad \lambda \in \mathbb{R}_+$$

• is solved as an augmented ODE system:

$$\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = \frac{f(t, x, y)}{x - \lambda y}$$

Menier, Bucci, Yagoubi, Mathelin, Schoenauer (2022), CD-ROM: Complementary Deep-Reduced Order Model, arXiv.

Neural correction

• Learn ROM correction from memory y:

$$\frac{\frac{d\alpha}{dt}}{\frac{dy}{dt}} = \frac{V^T g(V\alpha) + \mathcal{N}\mathcal{N}(y)}{\alpha - \Lambda y}$$

where Λ is a matrix to account for the different time scales

• Augment memory dimension (information bottleneck)

$$\frac{\frac{d\alpha}{dt}}{\frac{dY}{dt}} = \frac{g(V\alpha) + \mathcal{N}\mathcal{N}(Y)}{Enc(\alpha) - \Lambda Y}$$

where Enc is some learnable encoding

Training CD-ROM

Training data from observed (computed with DNS) trajectory

$$\hat{\alpha}_{t_i} = \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{u}_{DNS,t_i}$$

• with loss
$$\mathcal{L}(\alpha) = \sum_{t_0}^{t_n} \|\alpha_{t_i} - \hat{\alpha}_{t_i}\|_2$$

(+ regularization terms)

- Residual and Encoder are simple multilayer perceptrons (~5 layers) with ReLU activation fn.
- Optimizer is Adam with standard parameters
- A is initialized randomly
- Memory is initialized from the past of the true trajectory

Results: the cylinder

The Fluidic Pinball

Much less energy in the first modes

Results on the Pinball

The 10-mode ROM: First 3 modes, and relative distance between true and simulated trajectory

Data-driven / model-based PDE numerical simulations

- DL (e.g., GNNs) as a powerful surrogate model, almost "off-the-shelf"
 - Requires huge number of examples
 - Lack of accuracy (and certification thereon)
 - \circ + delicate tuning of hyperparameters \rightarrow AutoML
- Meta-learning improves the situation, but
 - \circ OoD DL results still not accurate enough \rightarrow warm start of FEM
- Inserting mechanistic knowledge
 - In the loss
 - Based on standards approximations, e.g. ROM

Requires expert knowledge in both fields

Toward Hybrid AI 2.0

- Performance
 - \circ Irregular geometries \rightarrow Unstructured meshes \rightarrow GNNs
 - $\circ~$ Few shot learning, OoD generalization \rightarrow Meta-learning
 - \circ Accuracy \rightarrow Data-driven inference as pre-processor
- Physical relevance
 - Physics in the loss
 - Residual learning
- Conclusions

Context

- Alan Turing (1950), *Can machines think?*
- Dartmouth wkp (1956),

intelligence as a sequence of logical operations

- ... symbolic / subsymbolic "debate"
- **Deep Learning** coming of age (2012+): a universal tool?
 - seemingly hitting a glass ceiling (now)

Deep Hybridization is the only way to move forward

AI as a goal

AI as a tool

Hybrid AI 2.0

Deeply Hybridize Deep Learning with

- Symbolic AI in the quest for **trustworthiness**
- Formal proofs and certification
- Control theory
- PDE theory
 - numerical simulation (this talk)
 - theoretical insights (ODE-Net, ...)
- Statistical physics
- Biology (genetics, omics, ...)
- you name it

All talks in this workshop :-)

Hybrid AI 2.0

Al as a tool

What has changed

- GAFAMs, BATXs, and other tech giants invest in basic research
 - more than public research can afford
 - in both material and human resources (brain drain)
 - "freedom or research" not any more an exclusive argument
- Irrational exuberance (>10 000 submissions at NeurIPS)

But

- Modern AI is, or could/will be, ubiquitous
- Only Public Research has the required diversity

The future of Public Research in AI lies in hybridizations

Hybrid AI 2.0

Thank you