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● Alan Turing (1950), Can machines think?             AI as a tool

● Dartmouth wkp (1956),                                     AI as a goal

intelligence as a sequence of logical operations

● … symbolic / subsymbolic “debate”

● Deep Learning coming of age (2012+): a universal tool?

○ seemingly hitting a glass ceiling (now)

Deep Hybridization is the only way to move forward

Context



      Good Old Numerical Simulation of PDEs

    Conductivity σ                  Finite Element Method           Computed current u

An image recognition problem?



Hybrid AI 1.0

    Conductivity σ                   Deep Neural Network              Computed current



Need patient-specific real-time simulation of laparoscopy

● Liver is hyper viscoelastic and anisotropic
● Several complex PDEs for soft tissues

○ anyway an approximation
● Material identification
● Patient-specific geometry

○ Not a big issue, but time consuming
● Boundary conditions are essential

○ but difficult to obtain from images

● Need less than 3mm error
● in less than 50ms per image

Soft Body Deformation  

Mendizabal, Brunet and Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.

Stéphane Cotin,  Mimesis



Bottleneck: real-time simulation

                 Replace FEM simulation by a Deep Network
                 Supervised learning (regression) of simulation results

Soft Body Deformation  

800 exemples, standard MSE loss



Problem solved?
● Error w.r.t. FEM below 10% → sufficient for surgeons
● 300 times faster than FEM → sufficient for real time surgery
● But single patient → only need generalization w.r.t. external forces
● Nothing there to learn for AI ?
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U-Net architecture 
Ronneberger et al., 2015

Multigrid V-cycle architecture
Briggs et al., Multigrid Tutorial, 2000



● Performance
○ Irregular geometries → Unstructured meshes → GNNs
○ Few shot learning, OoD generalization → Meta-learning
○ Accuracy → Data-driven inference as pre-processor

● Physical relevance
○ Physics in the loss 
○ Residual learning

● Conclusions

Toward Hybrid AI 2.0
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● The local “convolution” needs to accept 
any number of inputs, and 
be permutation-invariant  

● The global mapping must be
permutation equivariant

MoNet* convolution operator
● Given node features xi and edge features eij  

● Computes node feature values from trainable matrix Θk and kernels wk                 

Convolutional Graph Neural Networks

Convolution operation on 
    Regular grid                    Graph domain

 (*) Monti, F., et al. (2016): Geometric deep learning on graphs and manifolds using mixture model CNNs, CVPR.



E.g., solving some nonlinear Poisson equation 

● A mesh is a graph
● Edge features:  eij = pj - pi

where pi is the coordinate vector of node i
● Node features:

○ value of source term at node i: f(pi)
○ boundary indicator (1 if node i on the boundary, 0 otherwise)

MoNet for PDEs PhD Wenzhuo Liu
M. Yagoubi, MS



● 42 000 examples, varying both domain Ω and source function f
● FEniCSx used for simulations and mesh generation 
● Number of nodes of fine meshes: ~1000
● 12-fold cross-validation, 
● Loss = Mean Absolute Error w.r.t. FEM results on finest mesh
● Wilcoxon signed-rank test with 95% confidence

Hyperparameters
● Number of layers, of channels for the NNs                                      2-4, 32-64
● Number of nearest neighbors for up- and down-sampling                            6 
● Learning rate schedule                                                                   step decay
● Batch size, choice of optimizer and its parameters          Adam, default param.
● Initialization method :                                                                            Gloriot
● Early stopping (with validation set)

Experimental conditions



Generalisation Results

GNN CNN

Test 2.20 ± 0.16 6.14 ± 0.26

1200-1600 2.53 ± 0.17 6.55 ± 0.32

1600-2000 3.71 ± 0.25 7.21 ± 0.41

20 vertices 2.39 ± 0.18 5.72 ± 0.39

10 vertices 3.56 ± 0.31 6.11 ± 0.54

5 vertices 5.29 ± 0.41 6.40 ± 0.72

Training set: 30 vertices, ~1000 elements per mesh

Same distribution

30 vertices, finer meshes

{Less vertices, ~1000 elements per mesh

{



● Inference time for solving 5000 sample PDEs 

○ By batches of 100 on one GPU GTX 1080Ti for learned MGX models

○ Sequentially by FEniCSx on a Intel(R) Xeon(R) Silver 4108 CPU

Inference Computational Cost
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● Given a set of tasks Ti and corresponding examples 

● Learn a partial model fθ such that 

○ few examples and few gradient steps are needed 

to learn θi* that solves task i, forall i

● MAML++(**) relaxes the loss over several steps  

Model-Agnostic Meta-Learning - MAML(*)

(*) Finn, Abbeel, and Levine (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. 34th ICML
(**) Antoniou, Edwards, Storkey (2018). How to train your MAML. arXiv 1810.09502.



● Reynolds-Averaged Navier-Stokes Equations
● Single-task: U-Net GNNs

○ with limited inference domain 
○ Poor generalization w.r.t. airfoil geometry

● Multi-task: One task = one airfoil
○ One example = Reynolds number and Angle of Attack 

MAML++ for RANS



MAML++ Results

10-fold cross-validation for the whole process 

○ Test Set 1 : same 72 training airfoils, 10 new examples each

○ Interpolation Set 2 : 20 new NACA airfoils, 50 examples each

○ OoD* Test set : 20 thinner airfoils, 50 examples each

(*) OoD = Out of Distribution
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Sequential Data-based - FEM 

Obiols-Sales, Vishnu, Malaya, et al. (2020). CFDNet: A deep learning-based accelerator for fluid simulations. ICS’20.
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Power Grid simulation

● Physics: Kirchhoff law in all lines

● Traditional approach: Newton-Raphson, but too slow

PhD Balthazar Donon
(I. Guyon, MS)

Donon, Liu, Marot, Liu, Guyon, Schoenauer (2020). Deep Statistical Solvers. NeurIPS.



● Compute solution y*(x) for many x~p 

● Learn a surrogate model fθ
Main issue: generalization to different grid topologies

○ Graph Neural Networks mandatory

■ invariance and equivariance

○ Requires many y*(x)

The surrogate approach



● y*(x) can also be defined as

● and the Holy Grail is to find

● → Message Passing Graph Neural Networks

● aka Deep Statistical Solver

Physics informed approach



MPGNN in a nutshell



It works!
● same accuracy than Newton-Raphson 
● good generalization to (not too different) topologies
● Two orders or magnitude faster … for batches of topologies

… on small networks

Power Grids Experiments



Back to PDEs

e.g., Poisson equation for pressure in the Splitting scheme 
strategy for incompressible Navier-Stokes equations 

PhD Matthieu Nastorg
(A. Bucci, G. Charpiat, Th. Faney, MS)

(*) Yushan Wang (2015). Solving incompressible Navier-Stokes equations on heterogeneous parallel 
architectures. PhD thesis, LRI, U. Paris-Sud.

*



Deep Statistical Solver for discretized PDEs
Problem: solve ApUp=Bp
                                  Original DSS (Donon)            Recurrent MP (Nastorg) 
● Edge features:               Aij                                  pi-pj, ||pi-pj||

● Node features:               Bi                   fi if i interior, 
● Loss:                                                   same +                           + 

● Architecture:           37530 weights                             4276 weights



First results

Dirichlet boundary condition Mixed Dirichlet/Neuman boundary cond.

Open issue: number of iterations …



● Directly solve for the fixed point

○ using some RootFind routine

○ + approximation of the gradient

○ + regularization of its norm

Deep Equilibrium Models(*)

(*) Bai, Kolter, Koltun, NeurIPS 2019



Deep Equilibrium Models



DEQ Results
➔ Hyperparameters : 

● Latent dimension : 20
● Solver : Broyden (quasi-Newton method)
● Tolerance forward : 1.e-6 
● Threshold forward : 600
● Tolerance backward : 1.e-8
● Threshold backward : 600
● Learning rate : 0.01
● Gradient clipping : 0.01
● Scheduler : Reduce LR in plateau with step : 0.5
● Jacobian spec.rad weight : 1.0

➔ Total number of weights : 7241
➔ Sanity check: ||D(E(U)) - U||^2 around 1.e-5

Nb nodes Residual MSE

250-950 2.27e-3 1.06e-2

10000 training examples
Avg results on 1000 test samples

result on one OoD example

3882 1.20e-3 3.82e-2
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● Dynamical systems governed by

● Issues with numerical simulations

○ small scale structures and fast events → fine discretization

○ stability, numerical dispersion and dissipation

● Does not scale with intrinsic dimension

Reduced Order Models

Limit cycle
Intrinsic dim 2



POD (aka SVD, aka PCA, …)

● Dimension reduction to a reduced number of modes

● Dynamics computed from simplified solution → error



From Noack* equations:

ROM error

(*) Noack et al. (2003), A hierarchy of low-dimensional models for the transient and post-transient cylinder wake”, J. Fluid Mechanics.



● Goal: learn a correction from data:

● Taken’s theorem → all information can be retrieved from past trajectory

● Delay Differential Equation to aggregate information from the past 
in a time continuous manner: 

○ is solved as an augmented ODE system: 

Complementary Deep - ROM PhD Emmanuel Menier

Menier, Bucci, Yagoubi, Mathelin, Schoenauer (2022), CD-ROM: Complementary Deep-Reduced Order Model, arXiv.



● Learn ROM correction from  memory y:

where Λ is a matrix to account for the different time scales

● Augment memory dimension (information bottleneck)

where Enc is some learnable encoding

Neural correction



● Training data from observed (computed with DNS) trajectory

● with loss

 (+ regularization terms)

● Residual and Encoder are simple multilayer perceptrons (~5 layers) with 
ReLU activation fn. 

● Optimizer is Adam with standard parameters
● Λ is initialized randomly
● Memory is initialized from the past of the true trajectory

Training CD-ROM



Results: the cylinder



The Fluidic Pinball

Much less energy in the first modes



Results on the Pinball

The 10-mode ROM: First 3 modes, and relative distance between 
true and simulated trajectory



● DL (e.g., GNNs) as a powerful surrogate model, almost “off-the-shelf”
○ Requires huge number of examples
○ Lack of accuracy (and certification thereon)
○ + delicate tuning of hyperparameters → AutoML 

● Meta-learning improves the situation, but
○ OoD DL results still not accurate enough → warm start of FEM

● Inserting mechanistic knowledge
○ In the loss
○ Based on standards approximations, e.g. ROM

Requires expert knowledge in both fields

Data-driven / model-based PDE numerical simulations
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Deeply Hybridize Deep Learning with 

● Symbolic AI in the quest for trustworthiness
● Formal proofs and certification
● Control theory
● PDE theory 

○ numerical simulation (this talk)
○ theoretical insights (ODE-Net, …)

● Statistical physics
● Biology (genetics, omics, …)
● you name it

All talks in this workshop :-)

Hybrid AI 2.0



AI as a tool

What has changed

● GAFAMs, BATXs, and other tech giants invest in basic research
○ more than public research can afford 
○ in both material and human resources (brain drain)
○ “freedom or research” not any more an exclusive argument

● Irrational exuberance (>10 000 submissions at NeurIPS)

But

● Modern AI is, or could/will be, ubiquitous
● Only Public Research has the required diversity

The future of Public Research in AI lies in hybridizations

Hybrid AI 2.0



Thank you

Hybrid AI 2.0


