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Context

Alan Turing (1950), Can machines think?

Dartmouth wkp (1956),

intelligence as a sequence of logical operations

... symbolic / subsymbolic “debate”

Deep Learning coming of age (2012+): a universal tool?

o seemingly hitting a glass ceiling (now)

Deep Hybridization is the only way to move forward









SOft BOdy DefOrmatiOn Stéphane Cotin, Mimesis

Need patient-specific real-time simulation of laparoscopy

e Liveris hyper viscoelastic and anisotropic
e Several complex PDEs for soft tissues

© anyway an approximation
e Material identification
e Patient-specific geometry

o Not a big issue, but time consuming
e Boundary conditions are essential

o but difficult to obtain from images

e Need less than 3mm error
e in less than 50ms per image

Mendizabal, Brunet and Cotin - Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, MICCAI 2019.



Deep input tensor (3xn xn xn) for contact forces

network
output tensor (3xn_x n Xn, ) for displacements
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Soft Body Deformation

Problem solved?
Error w.r.t. FEM below 10% — sufficient for surgeons
300 times faster than FEM — sufficient for real time surgery
But single patient — only need generalization w.r.t. external forces
Nothing there to learn for Al ?
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Toward Hybrid Al 2.0

e Performance
o lrregular geometries — Unstructured meshes — GNNs
o Few shot learning, OoD generalization — Meta-learning
o Accuracy — Data-driven inference as pre-processor

e Physical relevance
o Physics in the loss
o Residual learning

e Conclusions
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MoNet for PDEs PhD Wenzhuo Liu

M. Yagoubi, MS

E.g., solving some nonlinear Poisson equation

—V((1 —u(z) + u(x)?) - Vu(z)) = f(z) in 2 with u(z)|se =1
e A mesh is a graph
e Edge features: €= P, - P,

where p. is the coordinate vector of node i
e Node features:

o value of source term at node i: f(p.)
o boundary indicator (1 if node i on the boundary, 0 otherwise)



Experimental conditions

42 000 examples, varying both domain Q and source function f
FEnICSx used for simulations and mesh generation

Number of nodes of fine meshes: ~1000

12-fold cross-validation,

Loss = Mean Absolute Error w.r.t. FEM results on finest mesh
Wilcoxon signed-rank test with 95% confidence

Hyperparameters

Number of layers, of channels for the NNs

Number of nearest neighbors for up- and down-sampling
Learning rate schedule

Batch size, choice of optimizer and its parameters
Initialization method :

Early stopping (with validation set)



Generalisation Results

Training set: 30 vertices, ~1000 elements per mesh

Same distribution

30 vertices, finer meshes

Less vertices, ~1000 elements per mesh

GNN CNN
Test 220+0.16 | 6.14+0.26
1200-1600 |2.53+0.17 |6.55+0.32
1600-2000 |3.71+0.25 |7.21+0.41
20 vertices | 2.39+0.18 | 5.72+0.39
10 vertices | 3.56 £+0.31 | 6.11 £ 0.54
5 vertices 5.29+041 |6.40+£0.72
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Model-Agnostic Meta-Learning - MAML™

e Given a set of tasks T. and corresponding examples
e Learn a partial model f, such that
o few examples and few gradient steps are needed

to learn ei* that solves task i, forall i

— Mmeta-learning
0 ---- |earning/adaptation
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e MAML++** relaxes the loss over several steps

(*) Finn, Abbeel, and Levine (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. 34th ICML
(**) Antoniou, Edwards, Storkey (2018). How to train your MAML. arXiv 1810.09502.



Training Testing




MAML++ Baseline with FineTune

.
0.0079 & 0.0008 | 0.0071 £ 0.0003 | 0.0071 & 0.0003

0.0117 £ 0.0014 | 0.0158 £ 0.0015 | 0.0156 & 0.0014
0.0369 = 0.0028 | 0.0643 £ 0.0179 | 0.0601 & 0.0155
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Power Grid simulation  enosaitazar bonon

(I. Guyon, MS)

: ' 2

e production & consumption e voltage

e power flow
e Physics: Kirchhoff law in all lines

e Traditional approach: Newton-Raphson, but too slow

Donon, Liu, Marot, Liu, Guyon, Schoenauer (2020). Deep Statistical Solvers. NeurlPS.



The surrogate approach

e Compute solution y*(x) for many x~p

e Learn a surrogate model f, Newton
Raphson

Main issue: generalization to different grid topologies

o Graph Neural Networks mandatory

m Invariance and equivariance
. :
o Requires many y*(x)

I fo(x) =y () |




Physics informed approach

y*(x) can also be defined as

y*(z) = argmin {(z, y) ¢ : violation of physical laws

yey (Kirchhoff’s laws)
and the Holy Grail is to find
6" = argminE,, [4(z, fo(z))]

0cO

— Message Passing Graph Neural Networks

aka

t(x, fo(x))



MPGNN in a nutshell
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Power Grids Experiments

It works!

e same accuracy than Newton-Raphson

e good generalization to (not too different) topologies

e Two orders or magnitude faster ... for batches of topologies

IEEE case 14 IEEE case 118

... on small networks



Let P be a set of Poisson problems, parametrized by p € X

Ep = (Qp, fp,9p) €EP Ehp = (Qp, Ap, Bp) € Par ML solver, parametrized by § € ©

FEM discretization

U, = solvery(Epp)

A-‘j=/r;v¢j'v¢id-’t

B = { /;1 f ¢ dx if i is interior

g if i is boundary

Define a loss function on a pair (U, Ejp) : LUy, Epp) = ||4pUp — Byl |2

1 2 3 4 5 B 8 10 12 15 16 20 24 30 40 48
Number of MPI processes
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Recurrent process on the latent state Storage of loss functions
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LU solution

Iter 13 Iter 16 Iter 20
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| Residual loss NRMSE | Time for LU | Time for DSS
Problem Py | oded | B2ed | 3ed | 24 | 18
Problem P, | 503 [ 0.0e2 | 8003 | 24 | 18




21 =:1)
zis1 = o(Wz + Uz +b),

h(z) = Wiz + by

z¥ = o(Wz* + Uz + b)




£ = | av™ - B

HO dirichlet

Hal = Ty 5 HY 4 (1 — Ty) x H*----m-mmmmmmmemeee >pyimal

d Tl={g :Il;::holret ||E‘9(Uﬁnal) B
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DEQ, = RootFind(fs(H, G) — H)

Training Loss : L = |[AU™ — B||" + w x ||J5,(H")||p + ||Bo(U™) — U™||" + || De(E(U™)) - Uﬁ""‘”
e ——————————

Residual Jacobian Encoder
Frobenius Norm




DEQ Results

- Hyperparameters :

Latent dimension : 20

Solver : Broyden (quasi-Newton method)
Tolerance forward : 1.e-6

Threshold forward : 600

Tolerance backward : 1.e-8

Threshold backward : 600

Learning rate : 0.01

Gradient clipping : 0.01

Scheduler : Reduce LR in plateau with step : 0.5

Jacobian spec.rad weight : 1.0

- Total number of weights : 7241
->  Sanity check: ||D(E(U)) - U]|*2 around 1.e-5

Nb nodes

Residual

MSE

250-950

2.27e-3

1.06e-2

10000 training examples

Avg results on 1000 test samples

3882

1.20e-3

3.82e-2

result on one OoD example
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Reduced Order Models

e Dynamical systems governed by o) g(u(x, t))

ot

e |ssues with numerical simulations

o small scale structures and fast events — fine discretization

o stability, numerical dispersion and dissipation -

e

e Does not scale with intrinsic dimension

Limit cycle
Intrinsic dim 2



Uy (21, t1)
Uz (@2, 1)

uy(xlvtl)

uy(mN’tl)

Uz (21, t2) - -
uz(x2,t2) - -

uy(21,t2) - -

uy(zn,t2) - -




Base Flow Limit Cycle

Transition
—

Time evolution of the mean field distortion (a,)

Periodic limit cycle
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Vig(Va) + NN(y)
Qv — Ny

_ g(Va) + NN(Y)
= Encla) — MY




Training CD-ROM
from observed (computed with DNS) trajectory

A T
g = vV UDNS.t;

with L&) = Zig

(+ regularization terms)

ot — Q|2

Residual and Encoder are simple multilayer perceptrons (~5 layers) with
ReLU activation fn.

Optimizer is Adam with standard parameters

Ais initialized randomly

Memory is initialized from the past of the true trajectory



- Train Trajectory . . .
Trainsition in the a; — ay Plane Time evolution of the mean field distortion (as)
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99% Energy : 972 modes
90% Energy : 173 modes

75% Energy : 55 modes

50% Energy : 16 modes
42% Energy : 10 modes
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Number of modes
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Data-driven / model-based PDE numerical simulations

e DL (e.g.,, GNNs)as a , almost “off-the-shelf”
o Requires huge number of examples

o Lack of accuracy (and certification thereon)
O

° improves the situation, but
o QoD DL results still not accurate enough — warm start of FEM

e Inserting
o Inthe loss
o Based on standards approximations, e.g. ROM
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Hybrid Al 2.0

Deeply Hybridize Deep Learning with

Symbolic Al in the quest for trustworthiness
Formal proofs and certification
Control theory
PDE theory
o numerical simulation (this talk)
o theoretical insights (ODE-Net, ...)
Statistical physics
Biology (genetics, omics, ...)
you name it

All talks in this workshop :-)



Hybrid Al 2.0

Al as a tool

What has changed

e GAFAMs, BATXs, and other tech giants invest in basic research
o more than public research can afford
o in both material and human resources (brain drain)
o “freedom or research” not any more an exclusive argument
e Irrational exuberance (>10 000 submissions at NeurIPS)

But
e Modern Al is, or could/will be, ubiquitous
e Only Public Research has the required diversity

The future of Public Research in Al lies in hybridizations



Hybrid Al 2.0

Thank you



