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improving the performance of Chuffed, a Lazy-Clause-Generation solver

improving the performance of Chuffed, a Lazy-Clause-Generation solver,

by influencing the LCG variable selection heuristic

improving the performance of Chuffed, a Lazy-Clause-Generation solver,
by using machine learning to predict unsatisfiable cores,
and using those predictions to initialise VSIDS variable weights
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Why?

ML + OR ML + CP ML + SAT ML + LCG?

iIdea: can we use ML to

accelerate a LCG solver?
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Guiding High-Performance SAT Solvers
with Unsat-Core Predictions

Daniel Selsam!®™) and Nikolaj Bjgrner?

! Stanford University, Stanford, CA 94305, USA
dselsam@cs.stanford.edu

2 Microsoft Research, Redmond, WA 98052, USA

Abstract. The NeuroSAT neural network architecture was introduced
in [37] for predicting properties of propositional formulae. When trained
to predict the satisfiability of toy problems, it was shown to find solu-
tions and unsatisfiable cores on its own. However, the authors saw “no
obvious path” to using the architecture to improve the state-of-the-art.

In thls work, we traln a 81mhﬁed NeuroSAT archltecture to dlrectl

N N l .

on SATCOMP-2018 Wlthm the standard 5 000 second timeout than the
original does. The modified Glucose solves 11% more problems than the
original, while the modified Z3 solves 6% more. The gains are even greater
when the training is specialized for a specific distribution of problems;
on a benchmark of hard problems from a scheduling domain, the modi-
fied Glucose solves 20% more problems than the original does within a
one-hour timeout. Our results demonstrate that NeuroSAT can provide
effective guidance to high-performance SAT solvers on real problems.

1 Introduction

Over the past decade, neural networks have dramatically advanced the state
of the art on many important problems, most notably object recognition [22],
speech recognition [13], and machine translation [45]. There have also been sev-
eral attempts to apply neural networks to problems in discrete search, such as
program synthesis [7,33], first-order theorem proving [17,27] and higher-order
theorem proving [16,18,42,44]. More recently, [37] introduce a neural network
architecture designed for satisfiability problems, called NeuroSAT, and show that
when trained to predict satisfiability on toy problems, it learns to find solutions
and unsatisfiable cores on its own. Moreover, the neural network is iterative,
and the authors show that by running for many more iterations at test time, it
can solve problems that are bigger and even from completely different domains

D. Selsam—This paper describes work performed while the first author was at Microsoft
Research.
(© Springer Nature Switzerland AG 2019

M. Janota and I. Lynce (Eds.): SAT 2019, LNCS 11628, pp. 336-353, 2019.
https://doi.org/10.1007/978-3-030-24258-9_24




conflict-

problem Chuffed directed

Instance Initialisation

solving

iIdea: used
learned initial
values




predict unsat initialise Chuffed’s
cores for VSIDS scores Chuffed regular
satisfiable based on solving
Instances predictions

train on
unsatisfiable CP
Instances

(©2022 N. Yorke-Smith



approach requires make unsat

both satisfiable 12 pul:_)hc Instances from REUact inee
unsatisfiable s cores from each
data and datasets MiniZinc Instance
unsatisfiable data benchmarks

(©2022 N. Yorke-Smith



predict unsat initialise Chuffed’s
cores for VSIDS scores Chuffed regular
satisfiable based on solving
Instances predictions

train on
unsatisfiable CP
Instances

(©2022 N. Yorke-Smith



ML model

Graph convolutions
dropout

2

<0 O Graph convolutions
Activation: Q o 1
, RelLU Q éob
ﬁ “ Softmax
/

| Inpufc: xz Output:
{AdJaceanr/nr;ﬂtar’E;I}X, Feature Softmax probability per variable

(©2022 N. Yorke-Smith



(©2022 N. Yorke-Smith

categorical
features

If a variable iIs
declared as a
Boolean, integer,
float or set

ML features

numerical
features
min value, max

If variable is part
of an unsat core of

the instance, the
label is one,
otherwise zero

value, range
of the variable
domain

use GCN output to

initialise Chuffed’s
VSIDS scores




predict unsat initialise Chuffed’s
cores for VSIDS scores Chuffed regular
satisfiable based on solving
Instances predictions

train on
unsatisfiable CP
Instances

(©2022 N. Yorke-Smith



EXperiments

100 runs on 4
largest problem

types

baseline: learned Inits: learned Inits:
ChuffedO Chuffed1 Ex Chuffed1 Inc

(©2022 N. Yorke-Smith



Results

MRCPSP 100 runs Bin-packing 100 runs
7400 - ’ , —
+ i —
5 7200 - i : i 5 12000
(] * ]
£ 7000 - 1 + * £
S 6800 - + + ¥ 5
g R .
S S S
o 5
=4 X

0{ I | | 0{ | | |
Chuffed0_OG Chuffedl Ex Chuffedl Inc Chuffed0_OG Chuffedl Ex Chuffedl _Inc
®Average Value ®Average Value
Price-collecting 100 runs Fastfood 100 runs
142.5
+ + - +
140.0 - * + 360 - + +
@ N + * = + i T
‘q‘)’ 137.5 - ; $ ; 340 - _+_ —_—
£ + =+ £
g 135.01 £ H 2 320 -
~ T ~
= 132.5 4 - ®
S + 300 - O O
£ 130.0 - l:‘:, B ® S
o o
Z 127.5 A £ 280
125.0 A T 260 ~ - -
Ve 7 P + >
0{ ! I ! { 0{ I ! I {
Chuffed0_OG Chuffedl Ex Chuffedl Inc Chuffed0_OG Chuffedl Ex Chuffedl Inc
®Average Value #®Average Value

(©2022 N. Yorke-Smith



Chuffed + learned init
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improving the performance of Chuffed, a Lazy-Clause-Generation solver,

by using machine learning to predict unsatisfiable cores,
and using those predictions to initialise VSIDS variable weights
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Value Heuristics fér Constraint

Learning;
|

Geoffrey Chu®®™¥ and Peter J. Stuckey

National ICT Australia, Victoria Laboratory, Department of Computing
and Information Systems, University of Melbourne, Melbourne, Australia
{geoffrey.chu,pstuckey}@unimelb.edu.au

Abstract. Search heuristics are of paramount importance for finding
good solutions to optimization problems quickly. Manually designing
problem specific search heuristics is a time consuming process and
requires expert knowledge from the user. Thus there is great interest
in developing autonomous search heuristics which work well for a wide
variety of problems. Various autonomous search heuristics already exist,
such as first fail, domwdeg and impact based search. However, such
heuristics are often more focused on the variable selection, i.e., pick-
ing important variables to branch on to make the search tree smaller,
rather than the value selection, i.e., ordering the subtrees so that the
good subtrees are explored first. In this paper, we define a framework
for learning value heuristics, by combining a scoring function, feature
selection, and machine learning algorithm. We demonstrate that we can
learn value heuristics that perform better than random value heuristics,
and for some problem classes, the learned heuristics are comparable in
performance to manually designed value heuristics. We also show that
value heuristics using features beyond a simple score can be valuable.

1 Introduction

Search heuristics are of paramount importance for finding good solutions to opti-
mization problems quickly. Search heuristics can roughly be divided into two
parts: the variable selection heuristic, which selects which variable to branch on,
and the value heuristic, which determines which value is tried first. There has
been significant research on autonomous search heuristics including: first fail [1],
variable state independent decaying sum (VSIDS) [2], domain size divided by
weighted degree (domwdeg) [3], impact based search [4], solution counting based
search [5], and action® based search [6]. Most of these search heuristics concen-
trate on variable selection, as this is critical in reducing the size of the search
tree, although some, in particular impact and action based search also gen-
erate value heuristics. Phase saving [7] if a value-only heuristic which reuses
the last value of a Boolean variable (its phase) when it is reconsidered. In

! Tt was originally called activity-based search, we use the alternate name to distinguish
it from the long established activity-based search used in SAT, SMT and LCG
solvers.

(© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 108-123, 2015.
DOI: 10.1007/978-3-319-18008-3_8
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Hscore=(2+3 +3) /3 =2.67

Hscore=(3+1+2)/3=2
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Hscore=(2+3+3) /3 =2.67
Hscore=(3+1+2)/3=2
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Constraint modeling language

annotation heuristic_search(array[int] of var int: Xx);

solve ::heuristic_search(Row) satisfy;
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Three variable ordering heuristics
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