Machine Learning to Accelerate
Solving of Constraint Programs

Neil Yorke-Smith
n.yorke-smith@tudelft.nl

]
TUDelft

objectives

learning from data
(System 1)

constraints

.
P o o

Inference over representations ?

e
(System 2) ' ogo 3
o@ D>

S 5N
00 ooozz decisions

v

“Main challenge is two-way
integration of learners and
solvers.” — Geffner

-

CO-augmented ML CO rT“?‘?'e'
acquisition
A A

ML-augmented - End-to-End CO
CO Learning
, l
4 l L

Combinatorial
Optimization [J Decision focussed
| learning
Learning to Learning
Branch and Cut Heuristics

Continuous
Optimization

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder:
End-to-End Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482

(©2022 N. Yorke-Smith

ML to configure CP-SAT
solver

ML to learn CP heuristics ML to embed forecasts
on-the-fly within a CP model

(©2022 N. Yorke-Smith

Learning Variable Activity
Initialisation for Lazy Clause
Generation Solvers

Ronald van Driel, Emir Demirovic, Neil Yorke-Smith
n.yorke-smith@tudelft.nl

]
T U Delft

improving the performance of Chuffed, a Lazy-Clause-Generation solver

(©2021 N. Yorke-Smith

0 Product v Solutions ¥ Open Source v Pricing Signin Sign up

H chuffed / chuffed (Public [\ Notifications % Fork 34 ¢ Star 65

<> Code (©) Issues 28 i1 Pull requests 2 (> Actions [J Projects () Security |~ Insights

¥ master ~ ¥ 4 branches © 6 tags Go to file Code ~ About

The Chuffed CP solver

eﬁ’ schutta Revert "Change old_est's type in the disjunctive constraint" ... 8edede5 on 21Sep) 124 commits
Readme

chuffed Revert "Change old_est's type in the disjunctive constraint" last month MIT license

: 65 stars
submodules Re-add cp profiler submodule 6 years ago

13 watching

.gitignore A fresh start for Chuffed. 6 years ago
34 forks

.gitmodules A fresh start for Chuffed. 6 years ago

. : B 1 3
CMakelLists.txt ump version ALIRICLS S Releases

DESCRIPTION A fresh start for Chuffed. 6 years ago
© 6 tags

LICENSE A fresh start for Chuffed. 6 years ago

README.md Add installation instructions to the README file 4 years ago Packages

[
0
D
D
h
h
b
0

chuffed.msc.in Add more supported standard flags to the solver configuration 4 years ago No packages published

README.md
Contributors 5

Chuffed, a lazy clause generation solver GE@ S

Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, Kathryn Francis
Languages
Data61, CSIRO, Australia

improving the performance of Chuffed, a Lazy-Clause-Generation solver

improving the performance of Chuffed, a Lazy-Clause-Generation solver,

by influencing the LCG variable selection heuristic

improving the performance of Chuffed, a Lazy-Clause-Generation solver,
by using machine learning to predict unsatisfiable cores,
and using those predictions to initialise VSIDS variable weights

(©2021 N. Yorke-Smith

Why?

ML + OR ML + CP ML + SAT ML + LCG?

iIdea: can we use ML to

accelerate a LCG solver?

(©2021 N. Yorke-Smith

generalised reason
for the failure

n

Check for
updates

Guiding High-Performance SAT Solvers
with Unsat-Core Predictions

Daniel Selsam!®™) and Nikolaj Bjgrner?

! Stanford University, Stanford, CA 94305, USA
dselsam@cs.stanford.edu

2 Microsoft Research, Redmond, WA 98052, USA

Abstract. The NeuroSAT neural network architecture was introduced
in [37] for predicting properties of propositional formulae. When trained
to predict the satisfiability of toy problems, it was shown to find solu-
tions and unsatisfiable cores on its own. However, the authors saw “no
obvious path” to using the architecture to improve the state-of-the-art.

In thls work, we traln a 81mhﬁed NeuroSAT archltecture to dlrectl

N N l .

on SATCOMP-2018 Wlthm the standard 5 000 second timeout than the
original does. The modified Glucose solves 11% more problems than the
original, while the modified Z3 solves 6% more. The gains are even greater
when the training is specialized for a specific distribution of problems;
on a benchmark of hard problems from a scheduling domain, the modi-
fied Glucose solves 20% more problems than the original does within a
one-hour timeout. Our results demonstrate that NeuroSAT can provide
effective guidance to high-performance SAT solvers on real problems.

1 Introduction

Over the past decade, neural networks have dramatically advanced the state
of the art on many important problems, most notably object recognition [22],
speech recognition [13], and machine translation [45]. There have also been sev-
eral attempts to apply neural networks to problems in discrete search, such as
program synthesis [7,33], first-order theorem proving [17,27] and higher-order
theorem proving [16,18,42,44]. More recently, [37] introduce a neural network
architecture designed for satisfiability problems, called NeuroSAT, and show that
when trained to predict satisfiability on toy problems, it learns to find solutions
and unsatisfiable cores on its own. Moreover, the neural network is iterative,
and the authors show that by running for many more iterations at test time, it
can solve problems that are bigger and even from completely different domains

D. Selsam—This paper describes work performed while the first author was at Microsoft
Research.
(© Springer Nature Switzerland AG 2019

M. Janota and I. Lynce (Eds.): SAT 2019, LNCS 11628, pp. 336-353, 2019.
https://doi.org/10.1007/978-3-030-24258-9_24

conflict-

problem Chuffed directed

Instance Initialisation

solving

iIdea: used
learned initial
values

predict unsat initialise Chuffed’s
cores for VSIDS scores Chuffed regular
satisfiable based on solving
Instances predictions

train on
unsatisfiable CP
Instances

(©2022 N. Yorke-Smith

approach requires make unsat

both satisfiable 12 pul:_)hc Instances from REUact inee
unsatisfiable s cores from each
data and datasets MiniZinc Instance
unsatisfiable data benchmarks

(©2022 N. Yorke-Smith

predict unsat initialise Chuffed’s
cores for VSIDS scores Chuffed regular
satisfiable based on solving
Instances predictions

train on
unsatisfiable CP
Instances

(©2022 N. Yorke-Smith

ML model

Graph convolutions
dropout

2

<0 O Graph convolutions
Activation: Q o 1
, RelLU Q éob
ﬁ “ Softmax
/

| Inpufc: xz Output:
{AdJaceanr/nr;ﬂtar’E;I}X, Feature Softmax probability per variable

(©2022 N. Yorke-Smith

(©2022 N. Yorke-Smith

categorical
features

If a variable iIs
declared as a
Boolean, integer,
float or set

ML features

numerical
features
min value, max

If variable is part
of an unsat core of

the instance, the
label is one,
otherwise zero

value, range
of the variable
domain

use GCN output to

initialise Chuffed’s
VSIDS scores

predict unsat initialise Chuffed’s
cores for VSIDS scores Chuffed regular
satisfiable based on solving
Instances predictions

train on
unsatisfiable CP
Instances

(©2022 N. Yorke-Smith

EXperiments

100 runs on 4
largest problem

types

baseline: learned Inits: learned Inits:
ChuffedO Chuffed1 Ex Chuffed1 Inc

(©2022 N. Yorke-Smith

Results

MRCPSP 100 runs Bin-packing 100 runs
7400 - ’ , —
+ i —
5 7200 - i : i 5 12000
(] *]
£ 7000 - 1 + * £
S 6800 - + + ¥ 5
g R .
S S S
o 5
=4 X

0{ I | | 0{ | | |
Chuffed0_OG Chuffedl Ex Chuffedl Inc Chuffed0_OG Chuffedl Ex Chuffedl _Inc
®Average Value ®Average Value
Price-collecting 100 runs Fastfood 100 runs
142.5
+ + - +
140.0 - * + 360 - + +
@ N + * = + i T
‘q‘)’ 137.5 - ; $; 340 - _+_ —_—
£ + =+ £
g 135.01 £ H 2 320 -
~ T ~
= 132.5 4 - ®
S + 300 - O O
£ 130.0 - l:‘:, B ® S
o o
Z 127.5 A £ 280
125.0 A T 260 ~ - -
Ve 7 P + >
0{ ! I ! { 0{ I ! I {
Chuffed0_OG Chuffedl Ex Chuffedl Inc Chuffed0_OG Chuffedl Ex Chuffedl Inc
®Average Value #®Average Value

(©2022 N. Yorke-Smith

Chuffed + learned init

Performance comparison on different problem types

Bl Chuffed0_OG
210.0% - B Chuffedl_Ex
el A Chuffedl Inc
"‘é 105.0% A
€
7 0
c 100 keo 101b1op . 101179%
> 100.0% - ¥ 100.p0% 100)00% 10008% o A 1000%
- | 98.96%
L ; 98.96%
o |
95.0% A
90.0% -
//

MRCPSP BinPacking Price-collecting Fastfood

(©2022 N. Yorke-Smith

improving the performance of Chuffed, a Lazy-Clause-Generation solver,

by using machine learning to predict unsatisfiable cores,
and using those predictions to initialise VSIDS variable weights

L essons

promising results

on MRCPSP and small difference

between Excluding
and Including —
generalisation

no improvement
on two other

compatible with
other ML-

bin-packing:
1-2% speed
Increase

classes:
not enough data?

Improvements to
LCG

(©2022 N. Yorke-Smith

What next?

direct other ML LCG predicting

more data parameter

embedding models . no-goods
learning

(©2022 N. Yorke-Smith

ML to configure CP-SAT
solver

ML to learn CP heuristics ML to embed forecasts
on-the-fly within a CP model

(©2022 N. Yorke-Smith

Online Learning of Deeper Variable
Ordering Heuristics for Constraint
Optimisation

Floris Doolaard and Neil Yorke-Smith
n.yorke-smith@tudelft.nl

]
TU Delft

Ambition

one-shot learning of optimisation heuristics
learn instance-specific variable ordering for COPs

iIdea: probe, learn, solve

(©2021 N. Yorke-Smith

Constraint modeling language Constraint solver

<>

) | Flatzinc | [IIER)

compiles to used by
e flatzinc.cpp
| |annotation heuristic_search(array[int] of var int: Xx); Run custom code
based on MiniZinc
solve ::heuristic_search(Row) satisfy; annotation

Python
embedding in C++

Engine
Random Forest
Regression
Step 1: collecting data I ‘Step 2: compute labels . Step 3: ML on data — ML with Scikit-Learn
Probing brancher Node scores/labels Heuristic brancher
e Randomly choose value e Compute score e Choose value based on
e Store features in a tree based on deep node score
structure heuristic e Cache new ML
e Continue until stop sign e |terates over predictions
probed tree e Continue until finding
the optimal answer

<

ML model predictions
Restart-Based Search

A/\. Heuristic Search

Search tree 1 Search tree 2 Search tree ... Search tree N

(©2021 N. Yorke-Smith

Value Heuristics fér Constraint

Learning;
|

Geoffrey Chu®®™¥ and Peter J. Stuckey

National ICT Australia, Victoria Laboratory, Department of Computing
and Information Systems, University of Melbourne, Melbourne, Australia
{geoffrey.chu,pstuckey}@unimelb.edu.au

Abstract. Search heuristics are of paramount importance for finding
good solutions to optimization problems quickly. Manually designing
problem specific search heuristics is a time consuming process and
requires expert knowledge from the user. Thus there is great interest
in developing autonomous search heuristics which work well for a wide
variety of problems. Various autonomous search heuristics already exist,
such as first fail, domwdeg and impact based search. However, such
heuristics are often more focused on the variable selection, i.e., pick-
ing important variables to branch on to make the search tree smaller,
rather than the value selection, i.e., ordering the subtrees so that the
good subtrees are explored first. In this paper, we define a framework
for learning value heuristics, by combining a scoring function, feature
selection, and machine learning algorithm. We demonstrate that we can
learn value heuristics that perform better than random value heuristics,
and for some problem classes, the learned heuristics are comparable in
performance to manually designed value heuristics. We also show that
value heuristics using features beyond a simple score can be valuable.

1 Introduction

Search heuristics are of paramount importance for finding good solutions to opti-
mization problems quickly. Search heuristics can roughly be divided into two
parts: the variable selection heuristic, which selects which variable to branch on,
and the value heuristic, which determines which value is tried first. There has
been significant research on autonomous search heuristics including: first fail [1],
variable state independent decaying sum (VSIDS) [2], domain size divided by
weighted degree (domwdeg) [3], impact based search [4], solution counting based
search [5], and action® based search [6]. Most of these search heuristics concen-
trate on variable selection, as this is critical in reducing the size of the search
tree, although some, in particular impact and action based search also gen-
erate value heuristics. Phase saving [7] if a value-only heuristic which reuses
the last value of a Boolean variable (its phase) when it is reconsidered. In

! Tt was originally called activity-based search, we use the alternate name to distinguish
it from the long established activity-based search used in SAT, SMT and LCG
solvers.

(© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 108-123, 2015.
DOI: 10.1007/978-3-319-18008-3_8

regular solving of CP solver

guided solving of CP solver

(©2021 N. Yorke-Smith

s, =1 s, =3
sy=2
(?) () (&) (P) () (&)
deepify R 5, =2
— e -3
b s =3 s, =1

(©2021 N. Yorke-Smith

0 é 0 Variables: {x, vy, z}

Pick variable with minimum score
Depth: d =2

(©2021 N. Yorke-Smith

o (‘) 0 Variables: {x, vy, z}

Pick variable with minimum score
Depth: d =2

(©2021 N. Yorke-Smith

o (‘) 0 Variables: {x, vy, z}

) 4 Pick variable with minimum score
Depth: d =2

(©2021 N. Yorke-Smith

s, =1 s, =3
sy=2
0 ¢ 9 Variables: {x, v, z}
s ,=2 Pick variable with minimum score
" s, =3\ /s, =1 Depth: d =2

(©2021 N. Yorke-Smith

s, =1 s, =3
sy=2
0 ¢ 9 Variables: {x, v, z}
s ,=2 Pick variable with minimum score
" s, =3\ /s, =1 Depth: d =2

(©2021 N. Yorke-Smith

Hscore=(2+3+3)/3=2.67

(©2021 N. Yorke-Smith

Hscore=(2+3 +3) /3 =2.67

Hscore=(3+1+2)/3=2

(©2021 N. Yorke-Smith

Hscore=(2+3+3) /3 =2.67
Hscore=(3+1+2)/3=2

Hscore=(2+1)/2=1.5

(©2021 N. Yorke-Smith

(©2021 N. Yorke-Smith

Constraint modeling language

annotation heuristic_search(array[int] of var int: Xx);

solve ::heuristic_search(Row) satisfy;

(©2021 N. Yorke-Smith

Constraint modeling language

—

compiles to

FlatZinc

>

used by

solve ::heuristic_search(Row) satisfy;

annotation heuristic_search(array[int] of var int: Xx);

Constraint solver

<>

flatzinc.cpp

Run custom code
based on MiniZinc
annotation

(©2021 N. Yorke-Smith

Constraint modeling language

—

compiles to

FlatZinc

>

used by

solve ::heuristic_search(Row) satisfy;

annotation heuristic_search(array[int] of var int: Xx);

Constraint solver

<>

flatzinc.cpp

Run custom code
based on MiniZinc
annotation

Engine

Step 1: collecting data I

e Randomly choose value
e Store features in a tree

e Continue until stop sign

Probing brancher

structure

&

(©2021 N. Yorke-Smith

Step 1: collecting data I

Constraint modeling language

—

compiles to

FlatZinc

>

used by

solve ::heuristic_search(Row) satisfy;

annotation heuristic_search(array[int] of var int: Xx);

Constraint solver

<>

flatzinc.cpp

Run custom code
based on MiniZinc
annotation

Engine

Probing brancher

Randomly choose value
Store features in a tree
structure

Continue until stop sign

<

Restart-Based Search

T

Search tree 1

Search tree 2 Search tree ... Search

tree N

Constraint modeling language Constraint solver

<>

) | Flatzinc | [IIER)

compiles to used by
e flatzinc.cpp
| |annotation heuristic_search(array[int] of var int: Xx); Run custom code
based on MiniZinc
solve ::heuristic_search(Row) satisfy; annotation

Engine

Step 1: collecting data l ‘Step 2: compute labels

Probing brancher Node scores/labels
e Randomly choose value e Compute score
e Store features in a tree based on deep

structure heuristic
e Continue until stop sign e |terates over

probed tree

<

Restart-Based Search

T

Search tree 1 Search tree 2 Search tree ... Search tree N

(©2021 N. Yorke-Smith

Constraint modeling language

— FlatZinc

compiles to

Constraint solver

<>

e flatzinc.cpp

I

used by

annotation heuristic_search(array[int] of var int:

solve ::heuristic_search(Row) satisfy;

X); Run custom code
based on MiniZinc
annotation

Engine

Step 1: collecting data l

‘Step 2: compute labels l Step 3: ML on data

Probing brancher

e Randomly choose value °
e Store features in a tree

structure
e Continue until stop sign °

Node scores/labels

Compute score
based on deep
heuristic
lterates over
probed tree

<

Restart-Based Search

T

Search tree 1 Search tree 2 Search tree ... Search tree N

(©2021 N. Yorke-Smith

Heuristic brancher

e Choose value based on
node score

e Cache new ML
predictions

e Continue until finding
the optimal answer

Constraint modeling language Constraint solver

<>

) | Flatzinc | [IIER)

compiles to used by
e flatzinc.cpp
| |annotation heuristic_search(array[int] of var int: Xx); Run custom code
based on MiniZinc
solve ::heuristic_search(Row) satisfy; annotation

Python
embedding in C++

Engine
Random Forest
Regression
Step 1: collecting data I ‘Step 2: compute labels I Step 3: ML on data —. ML with Scikit-Learn
Probing brancher Node scores/labels Heuristic brancher
e Randomly choose value e Compute score e Choose value based on
e Store features in a tree based on deep node score
structure heuristic e Cache new ML
e Continue until stop sign e |terates over predictions
probed tree e Continue until finding
the optimal answer
I ML model predictions
Restart-Based Search
Search tree 1 Search tree 2 Search tree ... Search tree N

(©2021 N. Yorke-Smith

Constraint modeling language Constraint solver

<>

) | Flatzinc | [IIER)

compiles to used by
e flatzinc.cpp
| |annotation heuristic_search(array[int] of var int: Xx); Run custom code
based on MiniZinc
solve ::heuristic_search(Row) satisfy; annotation

Python
embedding in C++

Engine
Random Forest
Regression
Step 1: collecting data I ‘Step 2: compute labels . Step 3: ML on data — ML with Scikit-Learn
Probing brancher Node scores/labels Heuristic brancher
e Randomly choose value e Compute score e Choose value based on
e Store features in a tree based on deep node score
structure heuristic e Cache new ML
e Continue until stop sign e |terates over predictions
probed tree e Continue until finding
the optimal answer

<

ML model predictions
Restart-Based Search

A/\. Heuristic Search

Search tree 1 Search tree 2 Search tree ... Search tree N

(©2021 N. Yorke-Smith

Probing Probing Probing

ML Fitting ML Fitting ML Fitting

Search Search Search

(©2021 N. Yorke-Smith

Three variable ordering heuristics
e smallest
* max regret
e anti first falil

Constraint modeling language Constraint solver

) | Flatzine |) [

compiles to used by

e flatzinc.cpp

on heuristic_search(array[int] of var int: x); Run custom code
based on MiniZinc
e ::heuristic_search(Row) satisfy; annotation
runs]] |} [}
Four COPs from MiniZinc library
embedding in C++
« RCPSP
Engine

Random Forest
Regression o I I aze
Step 1: collecting data H @Step 2: compute labels ’_‘ Step 3: ML on data :> ML with Scikit-Learn
e Evilsh
| » VIISNO
Probing brancher Node scores/labels Heuristic brancher

e Randomly choose value e Compute score e Choose value based on k
e Store features in a tree based on deep node score ® pe n taC S

structure heuristic e Cache new ML
e Continue until stop sign e |terates over predictions
probed tree e Continue until finding

the optimal answer

O - Experimental parameters
,, Timeout: 4 hours

Restart-Based Search

///// \ Heuristic Search

[Search tree 1 } (Search tree 2] {Search tree ... J [Search tree N }

e Job time: 15 minutes
e Depth:d =25

Runtime Deep Smallest by problem

140000(}

120000{-

|

!
1000004 -

f
i
|

80000} -
|

\

i
60000%-

Runtime (s)

400008 -
|

;
|

20000%

!
|

(©2021 N. Yorke-Smith

RCPSP j30

Evilshop

Amaze

EEN Gecode

mmm Deep Heuristic Search
ML fitting

mmm Probing

Runtime (s)

Results

Runtime Deep Max Regret by problem

1400000 /4
)

1200000}

|
1000000(H

RCPSP j30

Evilshop

Amaze

EEl Gecode

Bl Search
ML fitting

mmm Probing

Open stacks

Runtime (s)

Runtime Deep Anti-First Fail by problem

1750000

1

|

15000Qp

12500Jp
i
|

4

|
3
|

|
?.

|

100004p

7500(¢

RCPSP j30

Evilshop

Amaze

El Gecode

mmm Deep Heuristic Search

ML fitting
Emm Probing

Open stacks

arilieolwiiInNnGeG e

70 A '(/ -

60 -

(©2021 N. Yorke-Smith

Number of outperforms done by Gecode and Deep Smallest

Evilshop

Amaze

Emm Gecode outperforms DS
mmm DS outperforms Gecode
No outperforms

Open stacks

#FInstances

Results

N\ RcpPspiz0 7 Evilshop Amaze

Number of outperforms done by Gecode and Deep Regret

Emm Gecode outperforms DR
mmm DR outperforms Gecode
No outperforms

Open stacks

#instances

70 A

60 -

50 A

40 -

30 A

20 A

10 -

Number of outperforms done by Gecode and Deep Anti-First-Fail

EEm Gecode outperforms DAFF
mmm DAFF outperforms Gecode
No outperforms

Evilshop

Amaze Open stacks

L essons

y .
l f ‘ probe, approximate, restart-based search

promising results on 3 variable ordering heuristics

ablation study, variable+value ordering

ML to configure CP-SAT
solver

ML to learn CP heuristics ML to embed forecasts
on-the-fly within a CP model

(©2022 N. Yorke-Smith

RL to learn MIP branching

learning surrogate simulation models

robust optimisation with learning

optimising GNNs using CO solvers

Machine Learning to Accelerate
Solving of Constraint Programs

Neil Yorke-Smith
n.yorke-smith@tudelft.nl

«]
TUDelft

