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objectives

constraints

decisions

learning from data 
(System 1)

inference over representations 
(System 2)

“Main challenge is two-way 
integration of learners and 

solvers.” — Geffner
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ML to configure CP-SAT solver
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ML to learn CP heuristics 
on-the-fly
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ML to embed forecasts 
within a CP model
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improving the performance of Chuffed, a Lazy-Clause-Generation solver
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improving the performance of Chuffed, a Lazy-Clause-Generation solver,  
by using machine learning to predict unsatisfiable cores,  

and using those predictions to initialise VSIDS variable weights

improving the performance of Chuffed, a Lazy-Clause-Generation solver,  
by influencing the LCG variable selection heuristic
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improving the performance of Chuffed, a Lazy-Clause-Generation solver



Why?
ML + OR ML + CP ML + SAT SAT + CP LCG ML + LCG?
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idea: can we use ML to 
accelerate a LCG solver?



ⓒ2022 N. Yorke-Smith

( )generalised reason 
for the failure



Guiding High-Performance SAT Solvers
with Unsat-Core Predictions

Daniel Selsam1(B) and Nikolaj Bjørner2
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2 Microsoft Research, Redmond, WA 98052, USA

Abstract. The NeuroSAT neural network architecture was introduced
in [37] for predicting properties of propositional formulae. When trained
to predict the satisfiability of toy problems, it was shown to find solu-
tions and unsatisfiable cores on its own. However, the authors saw “no
obvious path” to using the architecture to improve the state-of-the-art.
In this work, we train a simplified NeuroSAT architecture to directly
predict the unsatisfiable cores of real problems. We modify several state-
of-the-art SAT solvers to periodically replace their variable activity scores
with NeuroSAT’s prediction of how likely the variables are to appear in
an unsatisfiable core. The modified MiniSat solves 10% more problems
on SATCOMP-2018 within the standard 5,000 second timeout than the
original does. The modified Glucose solves 11% more problems than the
original, while the modified Z3 solves 6% more. The gains are even greater
when the training is specialized for a specific distribution of problems;
on a benchmark of hard problems from a scheduling domain, the modi-
fied Glucose solves 20% more problems than the original does within a
one-hour timeout. Our results demonstrate that NeuroSAT can provide
effective guidance to high-performance SAT solvers on real problems.

1 Introduction

Over the past decade, neural networks have dramatically advanced the state
of the art on many important problems, most notably object recognition [22],
speech recognition [13], and machine translation [45]. There have also been sev-
eral attempts to apply neural networks to problems in discrete search, such as
program synthesis [7,33], first-order theorem proving [17,27] and higher-order
theorem proving [16,18,42,44]. More recently, [37] introduce a neural network
architecture designed for satisfiability problems, called NeuroSAT, and show that
when trained to predict satisfiability on toy problems, it learns to find solutions
and unsatisfiable cores on its own. Moreover, the neural network is iterative,
and the authors show that by running for many more iterations at test time, it
can solve problems that are bigger and even from completely different domains

D. Selsam—This paper describes work performed while the first author was at Microsoft
Research.

c© Springer Nature Switzerland AG 2019
M. Janota and I. Lynce (Eds.): SAT 2019, LNCS 11628, pp. 336–353, 2019.
https://doi.org/10.1007/978-3-030-24258-9_24
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What?
problem 
instance

Chuffed 
initialisation

conflict-
directed  
solving

solution

idea: used 
learned initial 

values
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How?

train on 
unsatisfiable CP 

instances

predict unsat 
cores for 

satisfiable 
instances

initialise Chuffed’s 
VSIDS scores 

based on 
predictions

Chuffed regular 
solving
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Data
approach requires 

both satisfiable 
data and 

unsatisfiable data

no public 
unsatisfiable 

datasets

make unsat 
instances from 

MiniZinc 
benchmarks

extract unsat 
cores from each 

instance
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ML model
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ML features
categorical 

features 
if a variable is 
declared as a 

Boolean, integer, 
float or set

numerical  
features 

min value, max 
value, range 

of the variable 
domain

use GCN output to 
initialise Chuffed’s 

VSIDS scores

if variable is part 
of an unsat core of 
the instance, the 

label is one, 
otherwise zero
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Experiments

baseline: 
Chuffed0

learned inits: 
Chuffed1_Ex

learned inits: 
Chuffed1_Inc

100 runs on 4 
largest problem 

types
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Results
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Chuffed + learned inits wins
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improving the performance of Chuffed, a Lazy-Clause-Generation solver,  
by using machine learning to predict unsatisfiable cores,  

and using those predictions to initialise VSIDS variable weights
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Lessons
promising results 
on MRCPSP and 

bin-packing: 
1-2% speed 

increase

small difference 
between Excluding 

and Including → 
generalisation

no improvement 
on two other 

classes: 
not enough data?

compatible with 
other ML-

improvements to 
LCG
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What next?
direct 

embedding more data other ML 
models

periodic 
refocusing

LCG 
parameter 
learning

predicting 
no-goods
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Online Learning of Deeper Variable 
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one-shot learning of optimisation heuristics

learn instance-specific variable ordering for COPs

idea: probe, learn, solve

Kristine Wook

Ambition
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Learning Value Heuristics for Constraint
Programming

Geoffrey Chu(B) and Peter J. Stuckey

National ICT Australia, Victoria Laboratory, Department of Computing
and Information Systems, University of Melbourne, Melbourne, Australia

{geoffrey.chu,pstuckey}@unimelb.edu.au

Abstract. Search heuristics are of paramount importance for finding
good solutions to optimization problems quickly. Manually designing
problem specific search heuristics is a time consuming process and
requires expert knowledge from the user. Thus there is great interest
in developing autonomous search heuristics which work well for a wide
variety of problems. Various autonomous search heuristics already exist,
such as first fail, domwdeg and impact based search. However, such
heuristics are often more focused on the variable selection, i.e., pick-
ing important variables to branch on to make the search tree smaller,
rather than the value selection, i.e., ordering the subtrees so that the
good subtrees are explored first. In this paper, we define a framework
for learning value heuristics, by combining a scoring function, feature
selection, and machine learning algorithm. We demonstrate that we can
learn value heuristics that perform better than random value heuristics,
and for some problem classes, the learned heuristics are comparable in
performance to manually designed value heuristics. We also show that
value heuristics using features beyond a simple score can be valuable.

1 Introduction

Search heuristics are of paramount importance for finding good solutions to opti-
mization problems quickly. Search heuristics can roughly be divided into two
parts: the variable selection heuristic, which selects which variable to branch on,
and the value heuristic, which determines which value is tried first. There has
been significant research on autonomous search heuristics including: first fail [1],
variable state independent decaying sum (VSIDS) [2], domain size divided by
weighted degree (domwdeg) [3], impact based search [4], solution counting based
search [5], and action1 based search [6]. Most of these search heuristics concen-
trate on variable selection, as this is critical in reducing the size of the search
tree, although some, in particular impact and action based search also gen-
erate value heuristics. Phase saving [7] if a value-only heuristic which reuses
the last value of a Boolean variable (its phase) when it is reconsidered. In
1 It was originally called activity-based search, we use the alternate name to distinguish
it from the long established activity-based search used in SAT, SMT and LCG
solvers.

c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 108–123, 2015.
DOI: 10.1007/978-3-319-18008-3 8
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regular solving of CP solver

probe learn guided solving of CP solver
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Variables: {x, y, z}

Pick variable with minimum score


Depth: d = 2
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Hscore = (2 + 3 + 3) / 3 = 2.67
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Hscore = (2 + 3 + 3) / 3 = 2.67

Hscore = (3 + 1 + 2) / 3 = 2
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Hscore = (2 + 3 + 3) / 3 = 2.67

Hscore = (3 + 1 + 2) / 3 = 2

Hscore = (2 + 1) / 2 = 1.5
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• Three variable ordering heuristics 
• smallest

• max regret

• anti first fail


• Four COPs from MiniZinc library 
• RCPSP

• Amaze

• Evilshop

• Open Stacks


• Experimental parameters 
• Timeout: 4 hours

• Job time: 15 minutes

• Depth: d = 25
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Results
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Samantha Borges

probe, approximate, restart-based search

promising results on 3 variable ordering heuristics

ablation study, variable+value ordering

Lessons
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RL to learn MIP branching

learning surrogate simulation models

robust optimisation with learning …..

optimising GNNs using CO solvers
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