
Machine Learning to Accelerate
Solving of Constraint Programs

Neil Yorke-Smith 
n.yorke-smith@tudelft.nl

ⓒ2022 N. Yorke-Smith ELLIIT focus period

objectives

constraints

decisions

learning from data
(System 1)

inference over representations
(System 2)

“Main challenge is two-way
integration of learners and

solvers.” — Geffner

ⓒ2022 N. Yorke-Smith

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, Bryan Wilder:

End-to-End Constrained Optimization Learning: A Survey. IJCAI 2021: 4475-4482

CO-augmented ML CO model
acquisition

Decision focussed
learning

ⓒ2022 N. Yorke-Smith

}

ⓒ2022 N. Yorke-Smith

1

ML to configure CP-SAT solver

1

ML to configure CP-SAT
solver

2

ML to learn CP heuristics
on-the-fly

3

ML to embed forecasts
within a CP model

Learning Variable Activity
Initialisation for Lazy Clause

Generation Solvers
Ronald van Driel, Emir Demirović, Neil Yorke-Smith

n.yorke-smith@tudelft.nl

CPAIOR’21ⓒ2022 N. Yorke-Smith

1

ⓒ2021 N. Yorke-Smith

improving the performance of Chuffed, a Lazy-Clause-Generation solver

ⓒ2022 N. Yorke-Smith

improving the performance of Chuffed, a Lazy-Clause-Generation solver,
by using machine learning to predict unsatisfiable cores,

and using those predictions to initialise VSIDS variable weights

improving the performance of Chuffed, a Lazy-Clause-Generation solver,
by influencing the LCG variable selection heuristic

ⓒ2021 N. Yorke-Smith

improving the performance of Chuffed, a Lazy-Clause-Generation solver

Why?
ML + OR ML + CP ML + SAT SAT + CP LCG ML + LCG?

ⓒ2021 N. Yorke-Smith

idea: can we use ML to
accelerate a LCG solver?

ⓒ2022 N. Yorke-Smith

()generalised reason 
for the failure

Guiding High-Performance SAT Solvers
with Unsat-Core Predictions

Daniel Selsam1(B) and Nikolaj Bjørner2

1 Stanford University, Stanford, CA 94305, USA
dselsam@cs.stanford.edu

2 Microsoft Research, Redmond, WA 98052, USA

Abstract. The NeuroSAT neural network architecture was introduced
in [37] for predicting properties of propositional formulae. When trained
to predict the satisfiability of toy problems, it was shown to find solu-
tions and unsatisfiable cores on its own. However, the authors saw “no
obvious path” to using the architecture to improve the state-of-the-art.
In this work, we train a simplified NeuroSAT architecture to directly
predict the unsatisfiable cores of real problems. We modify several state-
of-the-art SAT solvers to periodically replace their variable activity scores
with NeuroSAT’s prediction of how likely the variables are to appear in
an unsatisfiable core. The modified MiniSat solves 10% more problems
on SATCOMP-2018 within the standard 5,000 second timeout than the
original does. The modified Glucose solves 11% more problems than the
original, while the modified Z3 solves 6% more. The gains are even greater
when the training is specialized for a specific distribution of problems;
on a benchmark of hard problems from a scheduling domain, the modi-
fied Glucose solves 20% more problems than the original does within a
one-hour timeout. Our results demonstrate that NeuroSAT can provide
effective guidance to high-performance SAT solvers on real problems.

1 Introduction

Over the past decade, neural networks have dramatically advanced the state
of the art on many important problems, most notably object recognition [22],
speech recognition [13], and machine translation [45]. There have also been sev-
eral attempts to apply neural networks to problems in discrete search, such as
program synthesis [7,33], first-order theorem proving [17,27] and higher-order
theorem proving [16,18,42,44]. More recently, [37] introduce a neural network
architecture designed for satisfiability problems, called NeuroSAT, and show that
when trained to predict satisfiability on toy problems, it learns to find solutions
and unsatisfiable cores on its own. Moreover, the neural network is iterative,
and the authors show that by running for many more iterations at test time, it
can solve problems that are bigger and even from completely different domains

D. Selsam—This paper describes work performed while the first author was at Microsoft
Research.

c© Springer Nature Switzerland AG 2019
M. Janota and I. Lynce (Eds.): SAT 2019, LNCS 11628, pp. 336–353, 2019.
https://doi.org/10.1007/978-3-030-24258-9_24

ⓒ2022 N. Yorke-Smith

What?
problem
instance

Chuffed
initialisation

conflict-
directed
solving

solution

idea: used
learned initial

values

ⓒ2022 N. Yorke-Smith

How?

train on
unsatisfiable CP

instances

predict unsat
cores for

satisfiable
instances

initialise Chuffed’s
VSIDS scores

based on
predictions

Chuffed regular
solving

ⓒ2022 N. Yorke-Smith

Data
approach requires

both satisfiable
data and

unsatisfiable data

no public
unsatisfiable

datasets

make unsat
instances from

MiniZinc
benchmarks

extract unsat
cores from each

instance

ⓒ2022 N. Yorke-Smith

How?

train on
unsatisfiable CP

instances

predict unsat
cores for

satisfiable
instances

initialise Chuffed’s
VSIDS scores

based on
predictions

Chuffed regular
solving

ⓒ2022 N. Yorke-Smith

ML model

ⓒ2022 N. Yorke-Smith

ML features
categorical

features
if a variable is
declared as a

Boolean, integer,
float or set

numerical
features

min value, max
value, range

of the variable
domain

use GCN output to
initialise Chuffed’s

VSIDS scores

if variable is part
of an unsat core of
the instance, the

label is one,
otherwise zero

ⓒ2022 N. Yorke-Smith

How?

train on
unsatisfiable CP

instances

predict unsat
cores for

satisfiable
instances

initialise Chuffed’s
VSIDS scores

based on
predictions

Chuffed regular
solving

ⓒ2022 N. Yorke-Smith

Experiments

baseline:
Chuffed0

learned inits:
Chuffed1_Ex

learned inits:
Chuffed1_Inc

100 runs on 4
largest problem

types

ⓒ2022 N. Yorke-Smith

{

Results

ⓒ2022 N. Yorke-Smith

Chuffed + learned inits wins

ⓒ2022 N. Yorke-Smith

improving the performance of Chuffed, a Lazy-Clause-Generation solver,
by using machine learning to predict unsatisfiable cores,

and using those predictions to initialise VSIDS variable weights

ⓒ2022 N. Yorke-Smith

Lessons
promising results
on MRCPSP and

bin-packing:
1-2% speed

increase

small difference
between Excluding

and Including →
generalisation

no improvement
on two other

classes:
not enough data?

compatible with
other ML-

improvements to
LCG

ⓒ2022 N. Yorke-Smith

What next?
direct

embedding more data other ML
models

periodic
refocusing

LCG
parameter
learning

predicting
no-goods

ⓒ2022 N. Yorke-Smith

ⓒ2022 N. Yorke-Smith

1

ML to configure CP-SAT solver

1

ML to configure CP-SAT
solver

2

ML to learn CP heuristics
on-the-fly

3

ML to embed forecasts
within a CP model

Online Learning of Deeper Variable
Ordering Heuristics for Constraint

Optimisation
Floris Doolaard and Neil Yorke-Smith 

n.yorke-smith@tudelft.nl

ⓒ2021 N. Yorke-Smith BNAIC’21

2

ⓒ2021 N. Yorke-Smith

one-shot learning of optimisation heuristics

learn instance-specific variable ordering for COPs

idea: probe, learn, solve

Kristine Wook

Ambition

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

Learning Value Heuristics for Constraint
Programming

Geoffrey Chu(B) and Peter J. Stuckey

National ICT Australia, Victoria Laboratory, Department of Computing
and Information Systems, University of Melbourne, Melbourne, Australia

{geoffrey.chu,pstuckey}@unimelb.edu.au

Abstract. Search heuristics are of paramount importance for finding
good solutions to optimization problems quickly. Manually designing
problem specific search heuristics is a time consuming process and
requires expert knowledge from the user. Thus there is great interest
in developing autonomous search heuristics which work well for a wide
variety of problems. Various autonomous search heuristics already exist,
such as first fail, domwdeg and impact based search. However, such
heuristics are often more focused on the variable selection, i.e., pick-
ing important variables to branch on to make the search tree smaller,
rather than the value selection, i.e., ordering the subtrees so that the
good subtrees are explored first. In this paper, we define a framework
for learning value heuristics, by combining a scoring function, feature
selection, and machine learning algorithm. We demonstrate that we can
learn value heuristics that perform better than random value heuristics,
and for some problem classes, the learned heuristics are comparable in
performance to manually designed value heuristics. We also show that
value heuristics using features beyond a simple score can be valuable.

1 Introduction

Search heuristics are of paramount importance for finding good solutions to opti-
mization problems quickly. Search heuristics can roughly be divided into two
parts: the variable selection heuristic, which selects which variable to branch on,
and the value heuristic, which determines which value is tried first. There has
been significant research on autonomous search heuristics including: first fail [1],
variable state independent decaying sum (VSIDS) [2], domain size divided by
weighted degree (domwdeg) [3], impact based search [4], solution counting based
search [5], and action1 based search [6]. Most of these search heuristics concen-
trate on variable selection, as this is critical in reducing the size of the search
tree, although some, in particular impact and action based search also gen-
erate value heuristics. Phase saving [7] if a value-only heuristic which reuses
the last value of a Boolean variable (its phase) when it is reconsidered. In
1 It was originally called activity-based search, we use the alternate name to distinguish
it from the long established activity-based search used in SAT, SMT and LCG
solvers.

c© Springer International Publishing Switzerland 2015
L. Michel (Ed.): CPAIOR 2015, LNCS 9075, pp. 108–123, 2015.
DOI: 10.1007/978-3-319-18008-3 8

ⓒ2022 N. Yorke-Smith

()yx

regular solving of CP solver

probe learn guided solving of CP solver

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

deepify

Idea

ⓒ2021 N. Yorke-Smith

Variables: {x, y, z}

Pick variable with minimum score

Depth: d = 2

ⓒ2021 N. Yorke-Smith

Variables: {x, y, z}

Pick variable with minimum score

Depth: d = 2

1

ⓒ2021 N. Yorke-Smith

Variables: {x, y, z}

Pick variable with minimum score

Depth: d = 2

ⓒ2021 N. Yorke-Smith

Variables: {x, y, z}

Pick variable with minimum score

Depth: d = 2

ⓒ2021 N. Yorke-Smith

Variables: {x, y, z}

Pick variable with minimum score

Depth: d = 2

ⓒ2021 N. Yorke-Smith

Hscore = (2 + 3 + 3) / 3 = 2.67

ⓒ2021 N. Yorke-Smith

Hscore = (2 + 3 + 3) / 3 = 2.67

Hscore = (3 + 1 + 2) / 3 = 2

ⓒ2021 N. Yorke-Smith

Hscore = (2 + 3 + 3) / 3 = 2.67

Hscore = (3 + 1 + 2) / 3 = 2

Hscore = (2 + 1) / 2 = 1.5

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

ⓒ2021 N. Yorke-Smith

• Three variable ordering heuristics
• smallest

• max regret

• anti first fail

• Four COPs from MiniZinc library
• RCPSP

• Amaze

• Evilshop

• Open Stacks

• Experimental parameters
• Timeout: 4 hours

• Job time: 15 minutes

• Depth: d = 25

ⓒ2021 N. Yorke-Smith

Results

ⓒ2021 N. Yorke-Smith

Results

ⓒ2021 N. Yorke-Smith

Samantha Borges

probe, approximate, restart-based search

promising results on 3 variable ordering heuristics

ablation study, variable+value ordering

Lessons

ⓒ2022 N. Yorke-Smith

1

ML to configure CP-SAT solver

1

ML to configure CP-SAT
solver

2

ML to learn CP heuristics
on-the-fly

3

ML to embed forecasts
within a CP model

ⓒ2022 N. Yorke-Smith

RL to learn MIP branching

learning surrogate simulation models

robust optimisation with learning …..

optimising GNNs using CO solvers

Machine Learning to Accelerate
Solving of Constraint Programs

Neil Yorke-Smith 
n.yorke-smith@tudelft.nl

ⓒ2022 N. Yorke-Smith ELLIIT focus period

