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Motivation: Understanding Opinion Dynamics

 www.science.org/toc/science/381/6656

 www.sydsvenskan.se/2020-05-27/skulpturer-i-lund-vill-inte-sprida-coronavirus
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Motivation: Social Interactions Influence Building Energy Effieincy

Smart building sustainability depends on tenants’
lifestyle and behavior

Individuals may change their behavior depending on
social interactions [Fontan et al., IFAC CPHS 2022;

IFAC WC 2023]

Experimental study at KTH Live-In-Lab with 250
student residents [Farjadnia et al., IEEE CCTA 2023]
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Main Contribution

Traditionally, opinion dynamics research has focused on
asymptotic behavior (convergence,...) and qualitative
characterization of distributions (consensus, polarization, ...).

In this talk, results are presented on transient behavior of
gossip opinion dynamics and quantitative characterization
of opinion distributions.

We leverage concentration inequalities to establish
high-probability bounds over transient time and limited
network size.

4 / 35



Concentration Inequalities

Markov’s inequality: P{X ≥ a} ≤ E{X}
a

.

Chernoff’s inequality: P{SN ≥ a} ≤ e−µ
(eµ

a

)a

.

Bernstein’s inequality: P
{∥∥∥ N∑

i=1

Yi

∥∥∥ ≥ a
}
≤ 2n exp

(
− t2/2

σ2 + Kt/3

)
.

Adjacency matrix of a random graph: P{∥A−E{A}∥ ≤ c1
√
np} ≥ 1− n−c2 .

We derive concentration inequalities for gossip opinion dynamics over random graphs.
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Opinion dynamics: individual opinions evolve through social interactions.

Continuous-State Models:
French–DeGroot [French, ’56; DeGroot, ’74]
Friedkin–Johnsen [Friedkin & Johnsen, ’90]
Bounded confidence [Hegselmann&Krause, ’02;

Deffuant, ’00]
Biased assimilation [Dandekar, ’13]
Signed Networks [Altafini, ’13; Shi, ’19]
...

Discrete-State Models:
Voter [Holley & Liggett, ’75]
Threshold model [Granovetter, ’78]
Majority rule [Galam, ’02]
Social impact [Latané, ’81; Nowak, ’90]
Sznajd [Sznajd-Weron & Sznajd, ’00]
...

Eulerian Approach/Mean-Field
Approximation:
[Como & Fagnani, ’11; Canuto, ’12;
Mirtabatabaei, ’14; Kolarijani, ’21; Ravazzi, ’23]

Mean-Field Games over Graphons:
[Caines & Huang, ’21; Bayraktara & Wu, ’22;
Parise & Ozdaglar, ’23]

Co-Evolution: [Zino, ’20; Fontan, ’22]
Multidimensional Opinions:
[Friedkin, ’16; Parsegov, ’17]

Issue Sequences: [Tian, ’18; Wang, ’22]

Continuous Opinions and Discrete
Actions: [Martins, ’08]

...
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Graph G = (V, E ,A), with V = {1, . . . ,
n} the agent set, E the edge set, A the
weighted adjacency matrix

Agent i has opinion Xi (t) ∈ R at time t

Consider the empirical measure µt
= 1

n

∑
i δXi (t) and its evolution (where

n → ∞), instead of evolution of single
agents

X1(t)
...

Xn(t)

 ⇒

6 / 35



Opinion dynamics: individual opinions evolve through social interactions.

Continuous-State Models:
French–DeGroot [French, ’56; DeGroot, ’74]
Friedkin–Johnsen [Friedkin & Johnsen, ’90]
Bounded confidence [Hegselmann&Krause, ’02;

Deffuant, ’00]
Biased assimilation [Dandekar, ’13]
Signed Networks [Altafini, ’13; Shi, ’19]
...

Discrete-State Models:
Voter [Holley & Liggett, ’75]
Threshold model [Granovetter, ’78]
Majority rule [Galam, ’02]
Social impact [Latané, ’81; Nowak, ’90]
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Network structure highly affects evolution of opinion dynamics.

Influence of community structure on opinion
evolution and decision making outcomes:
[Si, ’09; Gargiulo, ’10; Schaub, ’16; Oestereich, ’19;
Fennell, ’21; Peng, ’22; Leng, ’23]

Community detection algorithms based on designed
dynamics over known networks:
Generic framework: [Schaub, ’19]
Random walks (Infomap, etc): [Rosvall, ’08; Delvenne, ’10;
Lambiotte, ’14]
Bounded confidence model: [Morarescu, ’10]

Fast and slow dynamics over clustered networks:
[Chow & Kokotovic, ’85; Yu, ’20; Dutta, ’22; Adhikari, ’22]

Communities (modules, clusters) are
subgroups with dense links internally or
similar features/roles, and can be de-
fined by

partitions based on optimizing
modularity

subgroups controlling the probability
of edge existence, e.g., in stochastic
block models
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Gossip Dynamics with Stubborn Agents

Undirected graph G = (V, E ,A) without self-loops.

V consists of regular agents Vr and stubborn agents Vs.
The stubborn agents do not change their opinions (leaders,
political parties, or media sources attempting to influence
public opinions).

Opinion of regular agent k ∈ Vr at time t: Xk(t) ∈ R.

Opinion of stubborn agent ℓ ∈ Vs: z
(s)
ℓ ∈ R.

Gossip interaction: Interaction probability matrix W = [wij ] = A/|E|. At time t ∈ N, with
probability wij independently of previous selections, two agents i and j are selected to interact.

Update rule: Only regular agents of i and j update. If i is regular,

Xi (t + 1) =

{
1
2 (Xi (t) + Xj(t)), if j is regular,
1
2 (Xi (t) + z

(s)
j ), if j is stubborn.

If j is regular, it follows the same equation but with i and j swapped.
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probability wij independently of previous selections, two agents i and j are selected to interact.

... it is obvious that interpersonal influences do not occur in the simultaneous way ...
— Friedkin & Johnsen, 1999
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Random Graph Model

Definition

Network size: n ∈ N+.

Link probability matrix: Ψ = ΨT = [ψij ] ∈ [0, 1]n×n.

In the random graph model RG(n,Ψ), a random graph G = (V, E ,A) is constructed
by adding undirected edge {i , j} to E with probability ψij independent of other agent
pairs, where i ̸= j ∈ V = {1, . . . , n}.
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In the random graph model RG(n,Ψ), a random graph G = (V, E ,A) is constructed
by adding undirected edge {i , j} to E with probability ψij independent of other agent
pairs, where i ̸= j ∈ V = {1, . . . , n}.

Examples

(i) If ψij ≡ ψ ∈ [0, 1], ∀i , j , RG(n,Ψ) is the Erdős–Rényi model.

(ii) Let ψij = wiwj/(
∑

k wk), where wi ≥ 0 and maxi w
2
i <

∑
k wk . Then

in RG(n,Ψ), random graphs have expected fixed degree distribution {wi}.
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Random Graph Model with Stubborn Agents

Definition

Agent set: V = Vr ∪ Vs, Vr = {1, . . . , nr}, Vs = {nr + 1, . . . , nr + ns}
Link probability matrix for edges between regular agents:

Ψ(r) = (Ψ(r))T = [ψ
(r)
ij ] ∈ [0, 1]nr×nr

Link probability matrix for edges between regular and stubborn agents:

Ψ(s) = [ψ
(s)
ij ] ∈ [0, 1]nr×ns

In the random graph model with stubborn agents RG-S(nr, ns,Ψ
(r),Ψ(s)), a

random graph G = (V, E ,A) is constructed
(i) by generating a random graph on the regular agents from RG(nr,Ψ

(r)),

(ii) by adding {i , j} to E with prob. ψ
(s)
i ,j−nr

independently for i ∈ Vr, j ∈ Vs.
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Gossip Dynamics over RG-S

The gossip dynamics over RG-S is an opinion dynamics evolving over a random graph
G = (V, E ,A) generated from an RG-S.

Remark: Two sources of randomness

1. Random graph G is constructed from an RG-S.
2. (Random) Gossip dynamics evolve over a realization of the random graph G.
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Gossip Dynamics over a Graph G
Suppose G with n agents is connected.

If there is no stubborn agent, regular agents reach consensus [Boyd et al., ’06].

The normalized distance from consensus ∥X (t)− 11TX (t)/n∥2/n concentrates around
its mean for large n and relatively small t [Fagnani & Zampieri, ’08].

The distance of current average from initial average |1TX (t)/n− 1TX (0)/n| concentrates
around zero [Fagnani & Zampieri, ’08; Vanka et al., ’09].

If there are stubborn agents with different opinions, X (t) keeps fluctuating [Acemoğlu et
al.,’13], but

(i) X (t) converges in distribution to a unique stationary distribution with mean xG,n.

(ii) The time average S(t) = 1
t

∑t−1
i=0 X (i) converges, and limt→∞ S(t) = xG,n a.s.

12 / 35



Gossip Dynamics over a Graph G
Suppose G with n agents is connected.

If there is no stubborn agent, regular agents reach consensus [Boyd et al., ’06].

The normalized distance from consensus ∥X (t)− 11TX (t)/n∥2/n concentrates around
its mean for large n and relatively small t [Fagnani & Zampieri, ’08].

The distance of current average from initial average |1TX (t)/n− 1TX (0)/n| concentrates
around zero [Fagnani & Zampieri, ’08; Vanka et al., ’09].

If there are stubborn agents with different opinions, X (t) keeps fluctuating [Acemoğlu et
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Gossip Dynamics over a Graph G
The following results hold for the expected final opinions xG,n.

(i) A network is called highly fluid, if the product of the mixing time of random walks on
that network and the aggregate centrality of stubborn agents is small.

If the network is highly fluid, the entries of xG,n concentrate around a fixed value
[Acemoğlu et al., ’13].

(ii) If regular agents form two communities connected to different stubborn agents and the
influence of stubborn agents is large, xG,n polarize accordingly [Como & Fagnani, ’16].
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Problem Formulation

1. Given a gossip opinion dynamics over an RG-S, provide
high-probability bounds for the difference between the
expected final opinions xG,n and the expected final
opinions over an averaged graph x∗,n.

2. Provide high-probability bounds for the difference
between the opinion time average S(t) and the
expected final opinions x∗,n.

3. Given a gossip opinion dynamics over an RG-S with
community structure, provide bounds for the difference
between opinions X (t) and expected average opinions
over finite time intervals.
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Gossip Dynamics over Averaged Graph

Gossip dynamics over RG-S has expected final
opinions xG,n = lim

t→∞
EG{X (t)}.

The averaged graph Ḡ = (V, Ḡ,E{A}) is obtained
by averaging random graph G.
Consider gossip dynamics over Ḡ.

Assumption 1

The stubborn agents of the averaged graph Ḡ have the same opinions z (s) as the stubborn
agents of RG-S.

The expected final opinions over the average graph are denoted by x∗,n.
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Concentration Inequality of Expected Final Opinions

Theorem 1 (Informal)

If the influence of stubborn agents is large enough, then expected final opinions xG,n are close to the
expected final opinions over the averaged graph x∗,n with high probability.
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Theorem 1

If δrs > 8 log n, then for a positive constant c

P{∥xG,n − x∗,n∥ ≤ εx,n∥z (s)∥} ≥ 1− n−c ,

εx,n = 4

(√
max{∆rs,∆sr} log n

δrs
+

2max{∆rs,∆sr}
√
∆r log n

δ2rs

)
.

δrs = min
i∈Vr

{
E
{ ∑

j∈Vs

aij
}}

, ∆rs = max
i∈Vr

{
E
{ ∑

j∈Vs

aij
}}

, ∆sr = max
i∈Vs

{
E
{ ∑

j∈Vr

aij
}}

, ∆r = max
i∈Vr

{
E
{ ∑

j∈V
aij
}}

.
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Remark

The result provides a bound for ∥xG,n − x∗,n∥ with high probability w.r.t. the randomness of G.

The bound is related to expected number of edges between agents.

The sharpness of concentration is influenced by the minimum expected influence of stubborn agents
on a regular agent.

If δrs = 0 (some agents not directly influenced by stubborn agents), then other expressions of εx,n can
be derived.
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The bound is related to expected number of edges between agents.

The sharpness of concentration is influenced by the minimum expected influence of stubborn agents
on a regular agent.

If δrs = 0 (some agents not directly influenced by stubborn agents), then other expressions of εx,n can
be derived.
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Proof Sketch
1. Write the gossip dynamics over G = (V, E ,A) in compact form,

X (t + 1) = Q(t)X (t) + R(t)z (s), {Q(t),R(t)} i.i.d. random matrices.

So xG,n = lim
t→∞

EG{X (t)} = (Inr − EG{Q(t)})−1EG{R(t)}z (s), where

EG{Q(t)} = Inr −
1

2α


∑n

i=1 a1i −a12 . . . −a1,nr

−a21
∑n

i=1 a2i
...

...
. . . −anr−1,nr

−anr,1 . . . −anr,nr−1

∑n
i=1 anr,i

 =: Inr −
M̄

2α
,

EG{R(t)} =
1

2α

a1,nr+1 . . . a1,n
...

...
anr,nr+1 . . . anr,n

 =:
Ū

2α
, α = |E|.

EG{Q(t)} = Inr −
M̄

2α
, EG{R(t)} =

Ū

2α
, α = |E|.

2. For gossip dynamics over averaged graph X ∗(t + 1) = Q∗(t)X ∗(t) + R∗(t)z (s), similarly we have
x∗,n = lim

t→∞
E{X ∗(t)} = (Inr − E{Q∗(t)})−1E{R∗(t)}z (s), and

E{Q∗(t)} = Inr −
E{M̄}
2E{α}

, E{R∗(t)} =
E{Ū}
2E{α}

=
Ψ(s)

2E{α}
.
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E{Ū}
2E{α}

=
Ψ(s)

2E{α}
.

18 / 35



Proof Sketch
1. Write the gossip dynamics over G = (V, E ,A) in compact form,

X (t + 1) = Q(t)X (t) + R(t)z (s), {Q(t),R(t)} i.i.d. random matrices.

So xG,n = lim
t→∞

EG{X (t)} = (Inr − EG{Q(t)})−1EG{R(t)}z (s), where

EG{Q(t)} = Inr −
M̄

2α
, EG{R(t)} =

Ū
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Proof Sketch

1. xG,n =

(
M̄

2α

)−1
Ū

2α
z (s).

2. x∗,n =

(
E{M̄}
2E{α}

)−1
Ψ(s)

2E{α}
z (s).

3. Apply matrix concentration inequalities to random matrices M̄ and Ū and Chernoff’s bound to α, to
bound ∥M̄ − E{M̄}∥, ∥Ū −Ψ(s)∥, and |α− E{α}|.
Then apply the matrix perturbation inequality ∥C−1 − D−1∥ ≤ ∥C−1∥ ∥D−1∥∥C − D∥ to get an
upper bound for ∥M̄−1 − E{M̄}−1∥.

4. The conclusion follows from

∥xG,n − x∗,n∥
≤ ∥M̄−1Ū − E{M̄}−1Ψ(s)∥∥z (s)∥
≤ (∥M̄−1∥∥Ū −Ψ(s)∥+ ∥M̄−1 − E{M̄}−1∥∥Ψ(s)∥)∥z (s)∥.
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Example: Concentration of Expected Final Opinions
RG-S has three communities with regular agents and two communities with stubborn agents.
x∗,n has three distinct values. Concentration appears as network size n increases.

n = 100 n = 200 n = 300
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When n is large, edges of sampled graphs can be different but expected final opinions are close
to the averaged version.

n = 100 n = 200 n = 300 n = 100 n = 200 n = 300
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The behavior of xG,n can be understood by studying x∗,n, which is easier to analyze.

Theorem 2 (Informal)

(i) (When stubborn agents have relatively small influence) If the influence of stubborn agents is large
enough for concentration to hold, but the connectivity between regular agents is much larger, then
expected final opinion xG,n is close to a consensus vector with high probability.

(ii) (When stubborn agents have relatively large influence) If the influence of stubborn agents is large
enough for concentration to hold, and the influence of stubborn agents is much larger than
connectivity between regular agents, then each agent’s expected final opinion is close to a weighted
average of stubborn agent opinions.
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Theorem 2

(i) (When stubborn agents have relatively small influence)
If min{∆rs,∆sr} ≥ log n, λ1(E{M̄}) = ω(max{

√
∆r log n,∆rs,∆sr}), and λ2(E{L̄}) = ω(max{∆rs,∆sr}),

where L̄ is the Laplacian matrix of the subgraph induced by regular agents, then there exists γ s.t.

P{∥xG,n − γ1nr∥ ≤ o(∥z (s)∥)} = 1− o(1).

(ii) (When stubborn agents have relatively large influence)

If δrs = ω(
√
(∆r log n)1/2 max{∆rs,∆sr}) and ∆rr = o(δ2rs/max{∆rs,∆sr}), then

P{∥xG,n − (diag(Ψ(s)1ns))
−1Ψ(s)z (s)∥ ≤ o(∥z (s)∥)} = 1− o(1).

Here Ψ(s) = [ψ
(s)
ij ] ∈ [0, 1]nr×ns is the link probability matrix for edges between regular and stubborn

agents.

f (n) = ω(g(n)), if f (n)/g(n) → ∞ as n → ∞.
δrs = min

i∈Vr

{
E
{ ∑

j∈Vs

aij
}}

, ∆rs = max
i∈Vr

{
E
{ ∑

j∈Vs

aij
}}

, ∆sr = max
i∈Vs

{
E
{ ∑

j∈Vr

aij
}}

, ∆r = max
i∈Vr

{
E
{ ∑

j∈V
aij
}}

.
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From “Consensus” to Polarization
The network structure (the influence of stubborn agents and connectivity between regular agents)
affects expected final opinions.

Summary

The derived concentration inequality is able to predict various types of opinion distributions.

Stubborn
agents have


small influence: expected final opinions are close to each other

moderate influence:
opinion distributions have multiple modes corresponding
to a community structure

large influence:
regular agents highly influenced by stubborn agents polarize;
other agents have opinions depending on network structure
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Concentration Inequality of Opinion Time Average

Opinions X (t), instead of their expectations, can be observed in practice.
Recall that the opinion time average S(t) = 1

t

∑t−1
i=0 X (i) converges to the expected final

opinions xG,n over time.

Theorem 3 (Informal)

Suppose that the influence of stubborn agents is large enough for concentration to hold.
Then for large enough t depending on network size n, the opinion time average S(t) is
close to x∗,n with high probability.
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For large enough t depending on network size n, the opinion time average S(t) = 1
t

∑t−1
i=0 X (i) is close

to x∗,n with high probability.

Theorem 3

If δrs = ω(
√
(∆r log n)1/2(∆rs ∨∆sr)), then for t > tn

P{∥S(t)− x∗,n∥ ≤ o(
√
n)} ≥ 1− c1n exp{−t/t2+η

n } − n−c2 ,

where tn = c3
√
nE{|E|}/δrs, η > 0, and c1, c2, c3 are universal constants.

f (n) = ω(g(n)), if f (n)/g(n) → ∞ as n → ∞. δrs = mini∈Vr

{
E
{∑

j∈Vs
aij
}}

For fixed n, c1n exp{−t/t2+η
n } → 0 as t → ∞. S(t) converges to xG,n concentrating around x∗,n with

failure probability n−c2 .

For large n, the failure probability mainly depends on time t, which must be large enough to ensure a
nontrivial bound.

Similar results hold for the case where δrs = 0.

Proof technique: Theorem 1 provides bounds for ∥xG,n − x∗,n∥, so it suffices to bound ∥S(t)− xG,n∥.
A Hoeffding’s inequality for Markov chains is derived using martingale methods and applied to the
analysis.
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Example: Concentration of Opinion Time Average

Opinion time average S(t) quickly concentrates around x∗,n, but agent opinion vector X (t)
does not have this clear pattern.

In the second row, a small number of agents are selected for the illustration of the dynamics.

27 / 35



Concentration Inequality of Transient Opinions

It could take a long time for large-scale networked dynamics to reach steady state, so it is relevant to
study transient behavior.

Assumption 2 (Community structure)

(i) RG-S(nr, ns,Ψ
(r),Ψ(s)) satisfies that nr is even, and

Ψ(r) =

[
1nr/2 0nr/2
0nr/2 1nr/2

][
ψ
(r)
s ψ

(r)
d

ψ
(r)
d ψ

(r)
s

][
1Tnr/2 0Tnr/2
0Tnr/2 1Tnr/2

]

where ψ
(r)
s is the link probability for agents in the same community,

and ψ
(r)
d is the link probability for agents in different communities.

(ii) Assume for simplicity that there exists ψ(s) ≥ 0 s.t. Ψ(s)1ns = ψ(s)1ns . Denote the average link

probability by ψ
(s)
0 := ψ(s)/nr.

Assumption 3 (Bounded initial condition)

There exists cx > 0 s.t. |Xi (0)| < cx and |z (s)j | < cx , ∀i ∈ Vr, j ∈ Vs. That is, the system is bounded.
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0nr/2 1nr/2

][
ψ
(r)
s ψ

(r)
d

ψ
(r)
d ψ

(r)
s

][
1Tnr/2 0Tnr/2
0Tnr/2 1Tnr/2

]

where ψ
(r)
s is the link probability for agents in the same community,

and ψ
(r)
d is the link probability for agents in different communities.

(ii) Assume for simplicity that there exists ψ(s) ≥ 0 s.t. Ψ(s)1ns = ψ(s)1ns . Denote the average link

probability by ψ
(s)
0 := ψ(s)/nr.

Remark

Note RG(nr,Ψ
(r)) is a stochastic block model with two equal-sized communities [Abbe, ’17].
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Ψ(r) =

[
1nr/2 0nr/2
0nr/2 1nr/2
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ψ
(r)
s ψ

(r)
d

ψ
(r)
d ψ

(r)
s

][
1Tnr/2 0Tnr/2
0Tnr/2 1Tnr/2

]

(ii) Assume for simplicity that there exists ψ(s) ≥ 0 s.t. Ψ(s)1ns = ψ(s)1ns . ψ
(s)
0 := ψ(s)/nr.

(i) Two communities with regular agents Vr1 = {1, . . . , nr/2} and Vr2 = {1 + nr/2, . . . , nr}.

Expected average opinions within communities χk(t) :=
2

nr

∑
j∈Vrk

EG{Xj(t)},

(ii) Expected average opinion over the network ι(t) :=
1

nr

∑
j∈Vr

EG{Xj(t)}.
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Theorem 4 (Informal)

Suppose that the influence of stubborn agents is small.

(i) If the link probability within communities ψ
(r)
s is larger than between communities ψ

(r)
d , then most

agents have opinions close to expected average opinions within their communities over a transient
interval.

(ii) If the link probability within communities ψ
(r)
s is similar to or smaller than between communities

ψ
(r)
d , then most agents have opinions close to expected average opinion over the network.

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

0 200 400 600 800 1000

-1

-0.5

0

0.5

1

29 / 35



Theorem 4

(i) If ψ
(r)
s = ω(max{ψ(r)

d log n, (log n)3/n}) and ψ(r)
d = ω(ψ

(s)
0 log n), then for ε > 0 and

t ∈ (Θ(n log n), o(min{nψ(r)
s /ψ

(r)
d , n

√
ψ
(r)
s n/(log n)})),

P{#{i : |Xi (t)− χCi (t)| > εcx} = o(n)} = 1− o(1),

where Ci = k if i ∈ Vrk , k = 1, 2, and χk(t) = (2/nr)
∑

j∈Vrk
EG{Xj(t)}.

f (n) = ω(g(n)), if f (n)/g(n) → ∞ as n → ∞.
f (n) = Θ(g(n)), if f (n), g(n) > 0 and ∃c1, c2 s.t. c1g(n) < f (n) < c2g(n).
o(n) and o(1) are independent of t.
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(i) If ψ
(r)
s = ω(max{ψ(r)

d log n, (log n)3/n}) and ψ(r)
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ψ
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s n/(log n)})),
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where Ci = k if i ∈ Vrk , k = 1, 2, and χk(t) = (2/nr)
∑

j∈Vrk
EG{Xj(t)}.

f (n) = ω(g(n)), if f (n)/g(n) → ∞ as n → ∞.
f (n) = Θ(g(n)), if f (n), g(n) > 0 and ∃c1, c2 s.t. c1g(n) < f (n) < c2g(n).
o(n) and o(1) are independent of t.

Remark

When stubborn agents have small influence (ψ
(s)
0 = o((log n)/n) is allowed) and edges within

communities are denser than between communities, agent opinions concentrate around averages within
communities.

The length of the time interval depends on relative edge density.
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(ii) If ψ
(r)
s < ψ

(r)
d + o(ψ

(r)
d ), ψ

(r)
d = ω(ψ

(s)
0 log n), and ψ

(r)
s = ω((log n)3/n),

then for ε > 0 and t ∈
(
Θ(n log n), o(min{nψ(r)

d /ψ
(s)
0 , n

√
ψ
(r)
d n/(log n)})),

P{#{i : |Xi (t)− ι(t)| > εcx} = o(n)} = 1− o(1),

where ι(t) = (1/nr)
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Theorem 4

(i) If ψ
(r)
s = ω(max{ψ(r)

d log n, (log n)3/n}) and ψ(r)
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where Ci = k if i ∈ Vrk , k = 1, 2, and χk(t) = (2/nr)
∑

j∈Vrk
EG{Xj(t)}.

(ii) If ψ
(r)
s < ψ

(r)
d + o(ψ

(r)
d ), ψ

(r)
d = ω(ψ

(s)
0 log n), and ψ

(r)
s = ω((log n)3/n),

then for ε > 0 and t ∈
(
Θ(n log n), o(min{nψ(r)

d /ψ
(s)
0 , n

√
ψ
(r)
d n/(log n)})),

P{#{i : |Xi (t)− ι(t)| > εcx} = o(n)} = 1− o(1),

where ι(t) = (1/nr)
∑

j∈Vr
EG{Xj(t)}.

Remark
When stubborn agents have small influence, and edges between communities are denser than or similar
to edges within communities, opinions concentrate around the opinion average over the graph.
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Example: Transient Behavior
Similar opinion profile (unimodal, bimodal,...) can appear at different phases of a process.

When stubborn agents have small influence, regular
agents first form two clusters but eventually one
cluster (recall expected final opinions in Thm 2).

When stubborn agents have large influence, regular
agents starting with one cluster split into two clus-
ters that align with influential stubborn agents.
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Application: Community Detection
Suppose we only observe a trajectory X (t) of the gossip dynamics, and we do not know the underlying
network G. Can we recover the community structure?

Theorem 5 (Informal)

(i) If (a) the influence of stubborn agents is small, (b) links within communities are denser than
between communities, and (c) the two communities start with different initial values,
then clustering transient opinions recovers most part of the community structure.

(ii) If (a) the influence of stubborn agents is large, (b) links within communities are denser than
between communities, and (c) stubborn agents have different influence on the two communities,
then clustering opinion time average recovers most part of the community structure.
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Simple Detection Algorithms
Detection algorithm based on transient
opinions

1. Select transient opinions X (t) at time t.
2. Apply k-means with k = 2 to X (t) to estimate
the community structure by paritioning {1, . . . , nr}
into two subgroups.

Detection algorithm based on time-averaged
opinions

1. Compute time-averaged opinions S(t) =
∑t

i=1 X (i).
2. Apply k-means with k = 2 to S(t) to estimate the
community structure by paritioning {1, . . . , nr} into two
subgroups.
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Simulation: Community Detection from Opinion Dynamics

Detection algorithms based on transient or time-averaged opinions can recover most community labels.
The accuracy of an algorithm is (# correctly classfied agents)/(# agents). The probability of Acc larger
than a given value increases as n grows.

When the influence of stubborn agents is small,
detection based on clustering transient opinions
X ([n log n]) achieves almost exact recovery.
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When the influence of stubborn agents is large,
detection based on clustering time-averaged opinions

S([n(log n)2.5]) achieves almost exact recovery.
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[·] is the rounding function.
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Conclusions

Analyzed gossip dynamics over random graphs with stubborn agents.

Concentration inequalities for expected final opinions, time-averaged opinions, and
transient opinions.

Explicit dependencies on time and network size

Application to a simple community detection problem.

Future work: Derive concentration inequalities for other networked dynamics,
e.g., FJ model, continuous-opinion-discrete-action models, nonlinear models.

https://people.kth.se/~kallej/
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