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A network science approach 
to signed graphs



Change of perspective

To capture direct interactions, a 
network represents components 
with nodes

and pairwise interactions.

To capture indirect interactions, 
one defines the notion of walk/path/
connectivity

Compared with mean-field approaches, 
which summarise interactions between all 
elements with a single averaged field, 
network models often have much higher 
explanatory power because they can 
account for sparse and non-random 
topologies.

34 nodes



Data, Dynamics and structure

Uncover structure from dynamics:

What are the important nodes or the 
important substructures in the graph?

Community detection, graph 
embeddings, etc.

Effect of topology on spreading:

What are the network properties that 
slow down or accelerate the 
dynamics?

DATA Fuel for the theoretical modelling



Data collection and 
community detection



Empirical data in social media?











Optimising signed modularity
To cluster signed networks, the purpose is to place negative edges between 
communities and positive edges inside communities. 


An efficient way based on NG modularity is to consider the signed network as the 
combination of two networks, defined by the positive and negative edges 
respectively, and to seek to optimise the difference of their modularities.

Positive edges 
inside Negative edges 

outside

 V. A. Traag and J. Bruggeman, Physical Review E 80, 036115 (2009).



Louvain for signed networks
Initial partition 
 C=12, Q=-0.08

After the first pass 
C=4, Q=0.38

After the second pass 
C=2, Q=0.45

VM Agg. VM VMAgg.

In the VM step, one tries to move a node 
to the community of its neighbours: 
sensible choice for positive relations, as 
nodes should be in the community of one 
of their neighbours, but not for negative 
relations, as nodes should actually be 
placed in a community different from that 
of their negative connections.



Louvain for signed networks
In the VM step, one could try to move tries to move a node to the any community, 
not only of the neighbours. Works very well but slows down the method 
drastically (no locality in the optimisation).


Alternative is to try to move a node to the community of its first neighbour for 
positive edges, and second neighbour for negative edges (“the enemy of my 
enemy could be my friend”).

https: //pypi.python.org/pypi/louvain/

J. Pougué Biyong and R. Lambiotte, in preparation.

http://pypi.python.org/pypi/louvain/


Laplacian for signed 
networks



Introduced in 1940s and primarily motivated by social and economic networks, a fundamental 
notion in the study of signed networks is the so-called structural balance. 


A signed graph is structurally balanced if and only if there is no cycle with an odd number of 
negative edges, which defines the cycle to be “negative”. 


The following theorem provides an alternative interpretation of structural balance in terms of a 
bipartition of signed graphs.

F. Heider. Attitudes and cognitive organization. J. Psychol., 21(1):107–112, 1946.

D. Cartwright and F. Harary. Structural balance: A generalization of heider’s theory. Psychol. Rev., 
63(5):277–293, 1956.

Important structures in a signed graph?



Laplacian in unsigned and signed networks

J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. De Luca, and S. Albayrak. Spectral analysis of 
signed graphs for clustering, prediction and visualization. In Proceedings of the 2010 SIAM International 
Conference on Data Mining, pages 559–570. SIAM, 2010.

A signed graph can be encoded by its signed 
(weighted) adjacency matrix W.

If there is no edge between nodes, Wij = 0; 
otherwise, Wij > 0 denotes a positive edge, 
while Wij < 0 denotes a negative edge. 


di = ∑
j

|Wij |L = D − W

An unsigned graph can be encoded by its 
signed adjacency matrix A.

If there is no edge between nodes, Aij = 0; 
otherwise, Aij > 0 denotes an edge. 


L = D − A di = ∑
j

Aij

d
dt

x = − Lx

2 nodes try to reach the same value 
(consensus)


2 nodes try to reach the same value 
(consensus)

2 nodes try to reach opposite values 

(dissensus)

1
 1
 1
 1


1
 -1




Laplacian in unsigned and signed networks

The signed graph can be encoded by its 
signed (weighted) adjacency matrix W.

If there is no edge between nodes, Wij = 0; 
otherwise, Wij > 0 denotes a positive edge, 
while Wij < 0 denotes a negative edge. 


Lrw = I − D−1W

The signed graph can be encoded by its signed 
adjacency matrix A.

If there is no edge between nodes, Aij = 0; 
otherwise, Aij > 0 denotes an edge. 


di = ∑
j

|Wij |L = D − WL = D − A di = ∑
j

Aij

0

λi ≥ 0

λ2 = 0 λ1 = 0

0

λ1 = 0
Graph is connected Graph is balanced

When the graph is balanced, the spectra 

of the signed and unsigned Laplacian can be 
mapped onto each other.



Graph is almost connected: communities are 
encoded in the (second) dominant eigenvectors 
(Fiedler, etc.,)

Graph is almost balanced: communities are 
encoded in the dominant eigenvector

Graph is connected Graph is balanced

J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E. De Luca, and S. Albayrak. Spectral analysis of 
signed graphs for clustering, prediction and visualization. In Proceedings of the 2010 SIAM International 
Conference on Data Mining, pages 559–570. SIAM, 2010.

Spectral methods



What if the network has more than 2 opposing groups?

A weaker condition for clusterability was proved 
by Davis, using the notion of weak balance to 
refer to graphs where no cycle has only a 
single negative edge. Graphs which exhibit 
weak balance, can be partitioned into k clusters 
with positive edges inside, and negative edges 
connecting them.


In the signed Laplacian, - (-) = +

The enemy of my enemy is?


Other Laplacians: SPONGE, Repelling 
Laplacian, etc.

J. A. Davis, Human relations 20, 181 (1967).

M. Cucuringu, P. Davies, A. Glielmo, and H. Tyagi, in The 22nd International Conference on Artificial 
Intelligence and Statistics (PMLR, 2019) pp. 1088–1098.

A. Knyazev, in 2018 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific 
Computing (SIAM, 2018) pp. 11–22.



Repelling versus opposing Laplacian

xT Lox = ∑
i, j

A+
ij |xi − xj |

2 + ∑
i, j

A−
ij |xi + xj |

2

xT Lrx = ∑
i, j

A+
ij |xi − xj |

2 − ∑
i, j

A−
ij |xi − xj |

2

A+ encodes the positive edges, and  A- the negative edges

Quadratic form of the Laplacians (“energy”)

Minimised when
xi = − xj

Minimised when
|xi − xj | → ∞

”one-dimensional bipolarisation”

Allows for multiple polarisation in

sufficiently many dimensions



Strong and weak random 
walks



Signed Laplacian and (strong) random walks
We consider the dynamics of two types of walkers, positive and negative 
walkers. Walkers perform a transition randomly but: if they take a negative edge, 
they change polarity.
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Signed Laplacian and (strong) random walks
We consider the dynamics of two types of walkers, positive and negative 
walkers. Walkers perform a transition randomly but: if they take a negative edge, 
they change polarity.

A+ encodes the positive edges, and  A- the negative 
edges


The dynamics is a random walk on a “supra”-adjacency 
matrix

n+; j(t + 1) = ∑
i

(n+;iT+;ij + n−;iT−;ij)
n−; j(t + 1) = ∑

i
(n−;iT+;ij + n+;iT−;ij)

T+;ij = A+;ij /di

T−;ij = A−;ij /di



Signed Laplacian and (strong) random walks
We consider the dynamics of two types of walkers, positive and negative 
walkers. Walkers perform a transition randomly but: if they take a negative edge, 
they change polarity.

A+ encodes the positive edges, and  A- the negative 
edges


The dynamics is a random walk on a “supra”-adjacency 
matrix

n+; j(t + 1) = ∑
i

(n+;iT+;ij + n−;iT−;ij)
n−; j(t + 1) = ∑

i
(n−;iT+;ij + n+;iT−;ij)

T+;ij = A+;ij /di

T−;ij = A−;ij /di

-> Unsigned and signed (normalised) Laplacian

(finds bottlenecks and polarisation)



From signed networks to complex-weighted networks



Kernels, problems and how to solve them
Unsigned networks


Real-world networks are sparse, and 
only a small fraction of the pairs of nodes 
are connected.

Random-walk-based kernels allow to 
estimate the proximity of pairs of nodes. 

In case of unsigned networks, the 
resulting similarity between two nodes is 
obtained from an appropriately weighted 
sum of the walks between them. 
Typically, the existence of many short 
walks between two nodes ensures 
their proximity. E.g. Heat kernel

Signed networks


Based on the strong balance:

Two nodes are similar if there exist 
many, short positive walks (even 
number of negative edges), and are 
dissimilar if there exist many, short 
negative walks (odd number of negative 
edges). 

Kernels are directly derived from strong 
random walks.



Kernels, problems and how to solve them
Unsigned networks


Real-world networks are sparse, and 
only a small fraction of the pairs of nodes 
are connected.

Random-walk-based kernels allow to 
estimate the proximity of pairs of nodes. 

In case of unsigned networks, the 
resulting similarity between two nodes is 
obtained from an appropriately weighted 
sum of the walks between them. 
Typically, the existence of many short 
walks between two nodes ensures their 
proximity. E.g. Heat kernel

Signed networks


Based on the strong balance:

Two nodes are similar if there exist 
many, short positive walks (even number 
of negative edges), and are dissimilar if 
there exist many, short negative walks 
(odd number of negative edges). 

Kernels are directly derived from strong 
random walks.

Perfectly clustered, yet contradictions for 
the walk



Kernels, problems and how to solve them
Strong walks


Based on the strong balance:

Two nodes are similar if there exist 
many, short positive walks (even number 
of negative edges), and are dissimilar if 
there exist many, short negative walks 
(odd number of negative edges). 

Kernels are directly derived from strong 
random walks.

Weak walks


Based on the weak balance:

Two nodes are similar if there exist 
many, short positive walks (made only of 
positive edges), and are dissimilar if 
there exist many, short negative walks 
(walks with one single negative edge). 

Any other edges (with at least 2 
negative edges) is not informative

Kernels are directly derived from strong 
random walks.

Enemy of my enemy is?



Kernels, problems and how to solve them

Strong walks Weak walks

S. Babul, J. Pougué Biyong, Z. Schwerkolt and R. Lambiotte, in preparation



… and more

Strong formulation 

of balance

Weak formulation 

of balance

B

+ + +

- - -

- --+ +

+

B U

U B U

B B

26,329 4,428 39,519 8,032

10,608 30,145 28,545 9,009

71 -112 47 -5



Conclusion

Many thanks to my collaborators and students, especially Yu Tian, 
Shazia Babul and John Pougué Biyong for this project.




