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q Network Control

q Node Controllability and Observability

q Partial Pinning Control

q Modeling influencers as pinners in social systems



Network Control 3

q Converging towards some collective behavior

q Controlling the trajectory of the achieved collective behavior

q Reaching a predefined point of the state space



Control of collective behavior 4

q Converging towards a common (synchronous) trajectory

q Imposing this trajectory (the so called pinning control problem)

�̇�! = 𝑓 𝑥! + 𝑐'
"

𝑎!"(ℎ(𝑥") − ℎ(𝑥!))

We know 
1. when and how it is possible to ensure that [1,2]

lim#→% 𝑥!(𝑡) − 𝑥"(𝑡) = 0 ∀𝑖, 𝑗

2. where and how to inject input signals so that [3,4]

lim#→%𝑥! 𝑡 = 𝑠(𝑡) ∀𝑖



Pinning control 5

q Converging towards a common (synchronous) trajectory

q Imposing this trajectory (the so called pinning control problem)

�̇�! = 𝑓 𝑥! + 𝑐'
"

𝑎!" ℎ 𝑥" − ℎ 𝑥! + 𝛿!𝜅&(𝑠 − 𝑥!)

�̇� = 𝑓(𝑠)
Where

• 𝛿! ∈ {0,1} and takes the value of 1 if node 𝑖 is pinned and 0 otherwise;
• 𝜅! is a control gain. 1
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Network Controllability 6

q Reaching a predefined point of the state space

�̇�! = 𝑓 𝑥!, 𝑢! +'
"

ℎ(𝑥!, 𝑥")
Some strategies have been proposed, none with 
guarantees to the best of my knwoledge

�̇�! ='
"

𝑎!"𝑥" + '
(

𝑏!( 𝑢(
i. We know how to select 𝑏!( so to ensure 

controllability of a network [5,6]
ii. we have studied the relationship between the 

number of driver nodes and the control effort [7,8]

…however…



My contributions 7

Sometimes it is impossible or unnecessary to control all the network nodes!
Problem Formulation:

Select the nodes where to inject a fixed number of input signals so to maximize
i. the number of controllable nodes (in Kalman’s sense) [9]
ii. the number of pinning controllable nodes [10].



My contributions 8

Sometimes it is impossible or unnecessary to control all the network nodes!
Problem Formulation:

Select the nodes where to inject a fixed number of input signals so to maximize
i. the number of controllable nodes (in Kalman’s sense) [9]

This formulation is obsolete as maximizing the ratio between controllable and 
driver nodes leads to network control being energetically prohibitive.

i. What is a set of controllable nodes?
ii. What is a set of observable nodes?



Node Controllability 9

The controllable subspace might not be the span of a subset of the columns of the 
identity matrix.

What is a set of controllable nodes?
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Node Controllability 10

The controllable subspace might not be the span of a subset of the columns of the 
identity matrix.

What is a set of controllable nodes?
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Node Observability 11

For dynamical systems we define the un-observable subspace.

What is a set of observable nodes?

1

2 3

𝑦 = 𝑥! 𝑥"

𝑥#
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On node controllability and observability [11] 12

Sometimes it is impossible or unnecessary to control all the network nodes!
Problem Formulation:

Select the nodes where to inject a fixed number of input signals so to maximize
i. the number of controllable nodes (in Kalman’s sense) [9]

This formulation is obsolete as maximizing the ratio between controllable and 
driver nodes leads to network control being energetically prohibitive.

1. The set of controllable nodes might not be unique;
2. Some non controllable nodes might still be perturbed by the control action;
3. The set of observable nodes can be smaller than the dimension of the 

complement to the observable subspace.



Partial Pinning Control [10] 13

Sometimes it is impossible or unnecessary to control all the network nodes!
Problem Formulation:

Select the nodes where to inject a fixed number of input signals so to maximize

ii. The number of pinning controllable nodes [10].

𝑥 $
(𝑡
)



From pinning control to opinion dynamics 14

Sometimes it is impossible or unnecessary to control all the network nodes!
Problem Formulation:

Select the nodes where to inject a fixed number of input signals so to maximize

ii. The number of pinning controllable nodes [10].

Can we exploit this framework to model the role of influencers in social networks?



Networked Opinion dynamics models describe
how 𝑁 agents shape their opinions 𝑥! by
interacting over a social network leading to the
emergence of collective behavior.

Opinion Dynamics Of Networked Agents 15

Most opinion dynamics models all stem from the linear consensus protocol [12]

𝑥! 𝑘 + 1 = ∑"345 𝛼!"𝑥" 𝑘 Þ 𝑥 𝑘 + 1 = 𝐴𝑥 𝑘

where 𝐴 = {𝑎!"}!345 is associated to the graph 𝒢.

Both discrete time and continuous time models have been proposed.



Limitations of the classical opinion dynamics models

In our view their main limitations are that
• Heterogeneous opinions emerge only as a result of heterogeneous node dynamics

• Clusters of opinions emerge either from state dependent and initially disconnected 

graphs [13], or from strong structural assumptions [14]

• When clusters of opinions do emerge, all opinions in the same cluster are the same

• The presence of influencers is not modelled (in this literature).

16
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Merging nonlinear OD with pinning control

• Heterogeneous opinions emerge only as a result of heterogeneous node dynamics

• Clusters of opinions emerge either from state dependent and initially disconnected 

graphs [13], or from strong structural assumptions [14]

• When clusters of opinions do emerge, all opinions in the same cluster are the same

18

These limitations can be overcome by considering existing nonlinear opinion dynamics 

models superimposed on directed graphs [15,16,17].
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These limitations can be overcome by considering existing nonlinear opinion dynamics 

models superimposed on directed graphs [15,16,17].

�̇�! = −𝑑𝑥! + 𝑢𝑆 𝛼!𝑥! +'
"

𝑎!"𝑥"
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Merging nonlinear OD with pinning control

• Heterogeneous opinions emerge only as a result of heterogeneous node dynamics

• Clusters of opinions emerge either from state dependent and initially disconnected 

graphs [13], or from strong structural assumptions [14]

• When clusters of opinions do emerge, all opinions in the same cluster are the same

21

These limitations can be overcome by considering existing nonlinear opinion dynamics 

models superimposed on directed graphs [15,16,17].

The role of influencers can be modelled as pinning control actions.

Adapting the pinning control strategy to nonlinear opinion dynamics models required 

the development of some novel theoretical results.



Bounded Partial Pinning Control [18] 22

We consider a set of 𝑁 agents on a directed graph and whose dynamics are

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!))

Where the functions 𝑓(⋅) and ℎ(⋅) satisfy the quad-like assumption

𝑥 − 𝑧 6 𝑉 𝑓 𝑥 − 𝑓 𝑧 ≤ 𝑧 − 𝑥 6 𝑊(𝑧 − 𝑥)

𝑊 − 𝜇 𝑉𝐻 < −𝜏 𝐼7 , 𝑉𝐻 = 𝐻8𝑉8 ≥ 0

𝑥 − 𝑧 8 𝑉 ℎ 𝑥 − ℎ 𝑧 ≥ 𝑥 − 𝑧 8 𝐻 (𝑥 − 𝑧)

ℎ 𝑧 − ℎ 𝑥 ≤ 𝑙||𝑧 − 𝑥||

For some matrices 𝑉,𝑊,𝐻 and some scalars 𝜏, 𝜇, 𝑙



Bounded Partial Pinning Control [18] 23

We consider a set of 𝑁 agents on a directed graph and whose dynamics are

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!))

We assume that the network agents are subject to two competing influencers, whose
persuading action is modeled as a pinning signal yielding

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

Where 𝑥9 and 𝑥; are the states of the two influencers and their trajectories are 
bounded.



Bounded Partial Pinning Control [18] 24
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�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

In this illustrative example we have

𝛿9,= = 1
𝛿;,! = 0 ∀𝑖 ≠ 1
𝛿;,4 = 1

The binary variables 𝛿9 and 𝛿; determine which nodes are 
directly influenced by the pinner and which by the opponent.



Research question [18] 25

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

The state of which nodes will converge sufficiently close to the pinner’s trajectory?
lim
#→%

sup 𝑥!(𝑡) − 𝑥9 ≤ 𝜖 ?



Research question [18] 26

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

The state of which nodes will converge sufficiently close to the pinner’s trajectory?
lim
#→%

sup 𝑥!(𝑡) − 𝑥9 ≤ 𝜖 ?

• The motivating question in the field of opinion dynamics is that we assume each 

node 𝑖 faces the question of whether it prefers option 𝜋 or 𝑜. 

• We model the preference of each agent through the output function

𝑦! = arg min
>∈{9,;}

lim
#→%

𝑥!(𝑡) − 𝑥>



Analysis: the DAG condensation 27

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

The state of which nodes will converge sufficiently close to the pinner’s trajectory?
lim
#→%

sup 𝑥!(𝑡) − 𝑥9 ≤ 𝜖 ?

Condensation

Each node of the condensed graph
is a Strongly Connected Component 
of the network graph

• Pinner
• opponent



Analysis: the DAG condensation 28

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

The state of which nodes will converge sufficiently close to the pinner’s trajectory?
lim
#→%

sup 𝑥!(𝑡) − 𝑥9 ≤ 𝜖 ?

Condensation

A Strongly Connected Component 
(SCC) of a graph is a subgraph
where there exists a path from any
node of the SCC ot any other node
of the SCC.



Analysis: bound derivation 29

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

The state of which nodes will converge sufficiently close to the pinner’s trajectory?
lim
#→%

sup 𝑥!(𝑡) − 𝑥9 ≤ 𝜖 ?

• Pinner
• opponent

Let 𝐺B be the ℎ-th SCC of the network. Then, for all 𝑖 ∈
𝑉B we show through Lyapunov theory that

lim sup 𝑥! − 𝑥9 ≤ 𝜖B
• 𝜖B is made larger by 𝑐;, 𝑥9 − 𝑥; , 𝑉B;

• 𝜖B can be made smaller through 𝑐9, 𝑉B9



Analysis: bound derivation 30

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

The state of which nodes will converge sufficiently close to the pinner’s trajectory?
lim
#→%

sup 𝑥!(𝑡) − 𝑥9 ≤ 𝜖 ?

• Pinner
• opponent

Let 𝐺B be the ℎ-th SCC of the network. Then, for all 𝑖 ∈
𝑉B we show through Lyapunov theory that

lim sup 𝑥! − 𝑥9 ≤ 𝜖B
• 𝜖B is made larger by 𝑐;, 𝑥9 − 𝑥; , 𝑉B;

• 𝜖B can be made smaller through 𝑐9, 𝑉B9

As we all know, Lyapunov theory always provides
conservative conditions. Are these bounds useful?



An opinion dynamics example 31

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!)) +𝑐9 𝛿9,! (ℎ 𝑥! − ℎ(𝑥9)) +𝑐; 𝛿;,! (ℎ(𝑥!) − ℎ(𝑥;))

We select
• 𝑓 𝑥! = −3𝑥! + 4 tanh 𝑥! , modeling a bistable system whose to stable equilibria

are (−1,1);
• ℎ(𝑥) = 𝑥;
• A network topology with 14 roots;
• 𝑥9 𝑡 = 1 and 𝑥; 𝑡 = −1 for all 𝑡;
• We assume the opponent pins all 14 roots.

Can a smart selection of the 14 pinned nodes allow the pinner to bring the 
majority of the network nodes closer to 𝑥9 than to 𝑥;?



A simple heuristic 32

This is a quite challenging scenario as the 14 nodes in 
level 0 will converge to 𝑥;.
In turn these 14 nodes directly influence 71 nodes in 
the Giant SCC.



A simple heuristic 33

A simple heuristic prescribing to pin the 14 nodes that
individually would provide the best bound for the 
nodes in the Giant SCC yields a surprisingly good
result.

Out of 306 agents, 250 ended up voting for the pinner.

This is a quite challenging scenario as the 14 nodes in 
level 0 will converge to 𝑥;.
In turn these 14 nodes directly influence 71 nodes in 
the Giant SCC.



Merging nonlinear OD with pinning control 34

These limitations can be overcome by considering existing nonlinear opinion dynamics 

models superimposed on directed graphs [15,16,17].

�̇�! = −𝑑𝑥! + 𝑢𝑆 𝛼!𝑥! +'
"

𝑎!"𝑥"

The role of influencers can be modelled as pinning control actions.



Merging nonlinear OD with pinning control 35

Our assumptions do not fit the saturated interaction protocols in [16]

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!))

𝑥 − 𝑧 6 𝑉 𝑓 𝑥 − 𝑓 𝑧 ≤ 𝑧 − 𝑥 6𝑊(𝑧 − 𝑥)
𝑊 − 𝜇 𝑉𝐻 < −𝜏 𝐼7, 𝑉𝐻 = 𝐻8𝑉8 ≥ 0

𝑥 − 𝑧 8 𝑉 ℎ 𝑥 − ℎ 𝑧 ≥ 𝑥 − 𝑧 8 𝐻 (𝑥 − 𝑧)
ℎ 𝑧 − ℎ 𝑥 ≤ 𝑙||𝑧 − 𝑥||

Recently [19] we have extended our results to the dynamics in [16].

�̇�! = −𝑑𝑥! + 𝑢𝑆 𝛼!𝑥! +'
"

𝑎!"𝑥"



Merging nonlinear OD with pinning control 36

Our assumptions do not fit the saturated interaction protocols in [16]

�̇�! = 𝑓 𝑥! + 𝜎'
"

𝑎!"(ℎ 𝑥" − ℎ(𝑥!))

𝑥 − 𝑧 6 𝑉 𝑓 𝑥 − 𝑓 𝑧 ≤ 𝑧 − 𝑥 6𝑊(𝑧 − 𝑥)
𝑊 − 𝜇 𝑉𝐻 < −𝜏 𝐼7, 𝑉𝐻 = 𝐻8𝑉8 ≥ 0

𝑥 − 𝑧 8 𝑉 ℎ 𝑥 − ℎ 𝑧 ≥ 𝑥 − 𝑧 8 𝐻 (𝑥 − 𝑧)
ℎ 𝑧 − ℎ 𝑥 ≤ 𝑙||𝑧 − 𝑥||

Recently [19] we have extended our results to the dynamics in [16].

�̇�! = −𝑑𝑥! + 𝑢𝑆 𝛼!𝑥! +'
"

𝑎!"𝑥" + 𝜹𝒊𝜿𝒔𝒙𝒔



Centrality of the pinned nodes 37

Both for controllability and pinning control, the nodes that drive the networks 

are characterized by small values of most centrality metrics

Considering nonlinear opinion dynamics models and toning down the control 

goal yields a substantially different result.

Network Pinned Nodes

Average Indegree 8.03 25.62

Average Outdegree 8.03 26.31

Average betweeness 1022 6303



Conclusions and future work 38

In the last decade, as a community, we made strides in network control.

I hope I managed to contribute with a novel perspective, that of controlling only a 

fraction of the network nodes and by linking network control to opinion dynamics.

Plenty of problmes still to be tackled!

1. We still lack synthesis tools to steer networks towards a desired state;

2. Plenty of existing opinion dynamics models, very few tuned on data [20].

3. Can we incorporate the framework of higher order interactions without losing the 

intuition on the role of the network structure?
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Thank you for your attention.


