A social power game for the concatenated opinion dynamics with stubborn agents

Lingfei Wang

Division of Decision and Control Systems
KTH Royal Institute of Technology
Stockholm, Sweden

Oct. 5, 2023, Linköping University
Contents

1 Background
 - Overview of opinion dynamics
 - An example: Paris Agreement

2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks

3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary
Social opinion dynamics

- Individuals’ opinions are influenced by their neighbors over social networks, and evolve following some cognitive patterns.

Opinion dynamics: to investigate opinion evolution by system theory

- opinions - scalars, vectors...
- social networks - matrices
- cognitive pattern - dynamics

⇒ collective behaviors:
- consensus, polarization,
- oscillation...
A social power game for the concatenated opinion dynamics with stubborn agents

Contents

1 Background
 - Overview of opinion dynamics
 - An example: Paris Agreement

2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks

3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary
UNFCCC

Atmospheric CO₂ in last 800K years

UNFCCC: an international environmental framework to combat “dangerous human interference with the climate system”

- Parties in the UNFCCC: 195 countries + EU
- “Supreme” governing body: Conference of the parties (COP)
A social power game for the concatenated opinion dynamics with stubborn agents

Background

An example: Paris Agreement

Negotiation process of the UNFCCC

- COP meets annually and decides on climate actions
- Many constituted bodies help the COP
- COP is plenary
- Constituted bodies have restricted participation (not plenary)
- Each constituted body meets once/twice a year
What is the Paris Agreement?

- **Comprehensive accord** for coordinating the international effort to keep the effects of global warming to below 2 °C relative to the pre-industrial level
- **Many aspects**: carbon emission mitigation, adaptation to the effects of climate change, climate finance, green technology transfer, climate agreement implementation, legal and procedural matters linked to climate agreements, etc.
- **Agreement**: all parties (195 countries + EU) agree on common measures → **consensus** is needed
- **Issues at stake**:
 - Future of our planet
 - Many trillions of US $...
 → long (15 years), complex negotiation process
A social power game for the concatenated opinion dynamics with stubborn agents

Background

An example: Paris Agreement

Mathematical model for the Paris Agreement

Task

Develop a dynamical opinion model that describes the process of "achieving an agreement" like the Paris agreement

- **Ingredients:**
 1. Agents: 196 parties
 2. State variables: opinions on the agreement
 3. Interaction graph: time-varying

- **Dynamics**
 1. agents are stubborn (defend their opinions)
 2. negotiation leads to compromise
 - at each meeting final opinions must be closer than initial opinions
 3. over the long time horizon consensus must be achieved
Mathematical model for the Paris Agreement

Task

Develop a dynamical opinion model that describes the process of "achieving an agreement" like the Paris agreement

- Candidate model for each meeting: Friedkin-Johnsen (FJ) model
- Model for multiple meetings in a sequence: \Rightarrow concatenated FJ model
Contents

1 Background
 - Overview of opinion dynamics
 - An example: Paris Agreement

2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks

3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary
The Friedkin-Johnsen (FJ) model

- **Motivation:** people’s stubbornness will influence their opinions
- **FJ model:**
 \[\mathbf{y}(t+1) = (I - \Theta) \mathbf{W} \mathbf{y}(t) + \Theta \mathbf{y}(0) \]
- **Opinions:** \(\mathbf{y}(t) \in \mathbb{R}^m \); weight matrix: \(\mathbf{W} \)
- **Stubbornness (‘‘memory’’ of initial opinions):**
 \[\Theta = \text{diag}\{\theta_1, \ldots, \theta_m\}, \theta_i \in [0, 1) \]
- **Possible agents:**
 \[
 \begin{cases}
 \theta_i > 0 & \text{stubborn ‘‘●’’} \\
 \theta_i = 0 & \text{non-stubborn ‘‘●’’}
 \end{cases}
 \]
A social power game for the concatenated opinion dynamics with stubborn agents

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Aymptotic behavior for a single FJ model

Solution:

\[
y(\infty) = \lim_{t \to +\infty} y(t) = (I - (I - \Theta)W)^{-1}\Theta y(0)
\]

- \(V \) is a stochastic matrix

- If \(\theta_i > 0, i = 1, \ldots, u \), and \(\theta_i = 0, i = u + 1, \ldots, m \),

\[
V = \begin{bmatrix} R & 0 \\ \hline u & m-u \end{bmatrix}, \quad R \in \mathbb{R}^{m \times u}_{>0}
\]
A social power game for the concatenated opinion dynamics with stubborn agents

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Concatenated FJ model

- Agent set \(V = \{1, \ldots, n\} \)
- Opinion states \(\mathbf{y}(s, t) \in \mathbb{R}^n \) (two time scales)
- Partial participation
 - stubborn participants \(U(s) \)
 - non-stubborn participants
 - absent agents

For a single discussion \(s \), a FJ model is applied to \(\mathcal{M}(s) \)

\[
\mathbf{y}(s, t + 1) |_{\mathcal{M}(s)} = \text{FJ}(\mathbf{y}(s, t) |_{\mathcal{M}(s)})
\]

Opinions are concatenated:

\[
\mathbf{y}(s, \infty) = \mathbf{y}(s + 1, 0)
\]
A social power game for the concatenated opinion dynamics with stubborn agents

Concatenated Friedkin-Johnsen (FJ) model

Model formulation

Concatenated FJ model (compact form)

- Let \(\mathbf{x}(s) = \mathbf{y}(s, \infty) \)
- Update rule: \(\mathbf{x}(s) = P(s) \mathbf{x}(s - 1) \)

\[
P(s) = \Pi(s)^\top \begin{bmatrix} R(s) & 0 & 0 \\ 0 & 0 & I_{n-m(s)} \end{bmatrix} \Pi(s)
\]

- \(P(s) \) is stochastic
- \(R(s) \in \mathbb{R}^{m(s) \times u(s)} \) is positive
- **Concatenated FJ model:**

\[
\mathbf{x}(s) = P(s)P(s - 1) \ldots P(1)\mathbf{x}(0)
\]
Convergence of the CFJ model

- Consensus: \(\lim_{s \to \infty} x(s) = c1 \iff \lim_{s \to \infty} P(s) \ldots P(1) = 1c^T \)

Consensus condition (existing result)

Given stochastic matrices \(Q(s), s \geq 1 \)

1. \(\exists \epsilon > 0 \text{ s.t. } [Q(s)]_{ij} > \epsilon \text{ if } [Q(s)]_{ij} > 0, \forall i, j, s \)

2. \(\exists s_1 < s_2 < \ldots \text{ s.t. } Q(s_k) \text{ has a positive column} \)

\[\implies \lim_{s \to \infty} Q(s)Q(s-1)\ldots Q(1) = 1c^T \]

- By exploiting the existing result, conditions for the CFJ model to achieve consensus can be given\(^1\)

\(^1\) L. Wang, et., al. IEEE Trans. on Automatic Control (2022)
A social power game for the concatenated opinion dynamics with stubborn agents

Contents

1 Background
 ■ Overview of opinion dynamics
 ■ An example: Paris Agreement

2 Concatenated Friedkin-Johnsen (FJ) model
 ■ Model formulation
 ■ From model to the climate talks

3 Social power game
 ■ Strategic formulation
 ■ Model analysis

4 Summary
A social power game for the concatenated opinion dynamics with stubborn agents

Concatenated Friedkin-Johnsen (FJ) model

From model to the climate talks

Back to the UNFCCC

Data collected for 295 meetings (2001-2015)

1. Meeting participants $\rightarrow M(s)$
2. Speakers (\leftrightarrow stubborn agents) $\rightarrow U(s)$
3. N. of speeches (\leftrightarrow stubbornness level) $\rightarrow \theta_i(s)$
Each year of UNFCCC:

1. COP (plenary)
2. many meetings of 11 constituted bodies

Split the overall 2001– 2015 product of stochastic matrices into yearly intervals with yearly matrices $Q(k)$

$$Q(k) = P_{\text{COP}}^k P_{\text{11}}(k) P_{\text{10}}(k) \ldots P_{\text{1}}(k), \quad k = 1, \ldots, 15$$

``Yearly`` opinion dynamics:

$$x(k) = Q(k)x(k - 1), \quad k = 1, \ldots, 15$$

COP is plenary $\implies Q(k)$ has positive columns

$\implies $ ``practical convergence'' is predicted

$\implies $ Paris Agreement
Contents

1 Background
 - Overview of opinion dynamics
 - An example: Paris Agreement

2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks

3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary
Strategic interactions in the UNFCCC

- The participating parties are **rational**, with many issues bargaining on table
- In the CFJ model, agents’ opinions are only passively evolving

Task

Develop the concatenated FJ model to reflect the **rationality** of the parties for the UNFCCC
Revisiting the concatenated FJ model

- **Observation 1**: parties can choose to speak or not
 \[\Rightarrow \text{“speaking” is linked with stubbornness of the model} \]
 \[\Rightarrow \text{stubbornness can be decided as an action!} \]

- **Observation 2**: \[\mathbf{x}(s) = P(s)\mathbf{x}(s - 1) = P(s) \ldots P(1) \mathbf{x}(0) \]
 \[Q(s) \]
 \[\Rightarrow \lim_{s \to \infty} Q(s) = \mathbf{c}^\top, \quad \lim_{s \to \infty} \mathbf{x}(s) = \mathbf{c} \]
 \[\Rightarrow Q(s) \text{ encodes the eigenvector centrality of each agent!} \]
A social power game for the concatenated opinion dynamics with stubborn agents

Social power game

Social power for the concatenated FJ model

- **(Cumulated) social power** = overall influence accumulated by agent \(i \) over all agents in the sequence of discussions \(1, \ldots, M \)

\[
x(M) = Q(M)x(0) = P(M) \ldots P(1)x(0)
\]

\[
sp(M)^\top = \frac{1}{n} 1^\top Q(M) = \frac{1}{n} 1^\top \begin{bmatrix}
\vdots & Q_{1i}(M) & \cdots \\
\vdots & : & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]

- \(sp(M) \sim \) eigenvector centrality: \(\lim_{M \to \infty} sp(M) = c \)

- \(sp(M) = \) nonlinear function of the stubbornness parameters \(\Theta(1), \ldots, \Theta(M) \)

\[
P(s) = (I - (I - \Theta(s))W(s))^{-1}\Theta(s)
\]
Maximizing social power

- $\text{sp}(M)$ is determined by the speaking occasions $a(1), \ldots, a(M)$ through the concatenated FJ model.

Question

How should an agent take speaking opportunities to maximize its social power?
Social power game

- **Players**: agents $\mathcal{V} = \{1, \ldots, n\}$
- **Actions**: allocation of speaking occasions
 \[a_i = (a_i(1), \ldots, a_i(M)) \iff \theta_i = (\theta_i(1), \ldots, \theta_i(M)) \]
- **Pay-off function**: social power
 \[u_i(a_i, a_{-i}) = sp_i(M) \]
A social power game for the concatenated opinion dynamics with stubborn agents

Social power game: constraints

1. More speaking, more stubborn
 \[\theta_i(s) = \theta a_i(s) \]

2. Limited budget of overall speaking opportunities: \(\gamma, K \)
 \[a_i(s) \leq \gamma, \quad a_i(1) + \cdots + a_i(M) \leq K \]

3. Limited capacity of speaking occasions per meeting: \(C \)
 \[\sum_{i \in \mathcal{V}} a_i(s) \leq C \]
Social power game: network topology

- The network is a complete graph

\[W(s) = W = \frac{1}{n} \mathbf{1} \mathbf{1}^\top, \quad s = 1, \ldots, M \]

- Meaning: meetings are all plenary
A social power game for the concatenated opinion dynamics with stubborn agents

Problems of interest

- **P1**: given the actions of two agents, who will obtain a higher social power (social power comparison)?
- **P2**: what is the (generalized) NE of the social power game (Nash equilibrium)?
- **P3**: for a given agent, if the actions of the other agents are fixed, what is the best strategy for her (best strategy)?
Contents

1 Background
 - Overview of opinion dynamics
 - An example: Paris Agreement

2 Concatenated Friedkin-Johnsen (FJ) model
 - Model formulation
 - From model to the climate talks

3 Social power game
 - Strategic formulation
 - Model analysis

4 Summary
A social power game for the concatenated opinion dynamics with stubborn agents

Social power game

Model analysis

Problem P1: social power comparison

\[\theta_i(s) = \theta a_i(s) \]

\[a_i(s) \rightarrow \theta_i(s) = \theta a_i(s) \rightarrow P(s) \rightarrow \text{CFJ model} \rightarrow sp_i(M) \]

- strategies of agents \(i \) and \(j \)

\[a_i = (a_i(1), \ldots, a_i(M)) \quad a_j = (a_j(1), \ldots, a_j(M)) \]

Theorem (Comparison of social powers)

For small enough \(\theta \), \(a_i(s) = a_j(s), \ \forall s < s' \quad a_i(s') < a_j(s') \}

\[\implies sp_i(M) < sp_j(M). \]

- Meaning: speaking more at early meetings gives higher social power

\[\implies \text{early mover earns more} \]
Problem P1: binary stubbornness

Assume $\gamma = 1$, i.e., agents can choose to speak or be silent

Theorem (Comparison of social powers)

Let $\tau_i = \arg \min_s \{a_i(s) = 0\}$.

$\tau_i < \tau_j \implies u_i < u_j$

No constraint is made on θ

Example

- $a_1 = (1, 1, 1, 0, 0, 1)$
- $a_2 = (1, 0, 1, 1, 1, 0)$

agent 1 wins!
A social power game for the concatenated opinion dynamics with stubborn agents

Problem P2: (generalized) Nash Equilibrium

\[\sum_{i \in V} a_i(s) \leq C \]

\[\theta_i(s) = \theta a_i(s) \]

\[P(s) \rightarrow \text{CFJ model} \]

Nash equilibrium: \[a_i^* = \arg \max_{a_i} u_i(a_i, a_{-i}) \]

Theorem (Generalized Nash equilibrium)

For \(\theta \) small enough, if \(\gamma \mid C \), any \(a^* \) taking the following form is a GNE

- For \(i = 1, \ldots, \frac{C}{\gamma} \):
 \[a_i^* = (\underbrace{\gamma, \ldots, \gamma}_\text{\(\lceil \frac{K}{\gamma} \rceil \) meetings}, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, \ldots, 0) \]

- For \(i > \frac{C}{\gamma} \), \(a_i^* \) can be arbitrarily chosen such that
 \[a_i^*(1) = \cdots = a_i^*(\lceil \frac{K}{\gamma} \rceil) = 0, \quad \sum_{j \in V} a_j^*(\lceil \frac{K}{\gamma} \rceil + 1) = C \]
Problem P2: Nash equilibrium (cont’d)

- Multiple GNEs
- On the equilibrium agents tend to speak more in early meetings
- \(\implies \) early mover strategies consist the GNE

Theorem (Nash equilibrium: binary stubbornness)

Assume \(\gamma = 1 \) and \(C = |\mathcal{V}| \). For small enough \(\theta \), the unique NE is

\[
\boldsymbol{a}_i^* = (1, \ldots, 1, 0, \ldots, 0)
\]

\(K \) meetings

\(\implies \) everyone takes the early mover strategy!
A social power game for the concatenated opinion dynamics with stubborn agents

Problem 3: best strategy

- Early mover strategy

\[\tilde{a}_i = (\gamma, \ldots, \gamma, K - \gamma\left\lceil \frac{K}{\gamma} \right\rceil, 0, \ldots, 0) \]

\[\left\lceil \frac{K}{\gamma} \right\rceil \text{ meetings} \]

Theorem (Best strategy)

For \(\theta \) small enough, it holds

\[\tilde{a}_i = \arg \max_{a_i} u_i(a_i, a_{-i}), \quad \forall a_{-i}. \]

- Meaning: the early mover strategy is a dominant strategy
- \(\implies \) early mover advantage
Problem 3: best strategy (cont’d)

- Early mover strategy

\[
\tilde{a}_i = (\gamma, \ldots, \gamma, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, \ldots, 0) \quad \text{meetings}
\]

- The early mover strategy might not be optimal for larger \(\theta \)

Example. \(\gamma = 1 \), \(K = 6 \) and \(\theta = 0.6 \)

\[
\begin{align*}
\mathbf{a}_1' &= (1, 1, 1, 1, 1, 0, 1, 0, 0, 0) \\
\mathbf{a}_2 &= (0, 1, 1, 1, 0, 1, 0, 1, 1, 0) \\
\mathbf{a}_3 &= (1, 1, 1, 1, 0, 1, 0, 0, 1, 0) \\
\mathbf{a}_4 &= (1, 1, 0, 1, 1, 1, 1, 0, 0, 0) \\
\end{align*}
\]

\[u_1(\tilde{a}_1, \mathbf{a}_{-1}) < u_1(\mathbf{a}_1', \mathbf{a}_{-1}) \]
Early mover advantage for general stubbornness

- Early mover strategy

\[
\tilde{a}_i = (\underbrace{\gamma, \ldots, \gamma}_K, K - \gamma \lceil \frac{K}{\gamma} \rceil, 0, \ldots, 0)
\]

\[s = \lfloor \frac{K}{\gamma} \rfloor \text{ meetings} \]

Theorem (General stubbornness)

For any \(a_{-i}\) it must be

\[
u_i(\tilde{a}_i, a_{-i}) \geq \max_{a_i \in A_i(a_{-i})} u_i(a_i, a_{-i}) - 2\left(1 - \frac{1}{n}\right) \sum_{s=\lfloor \frac{K}{\gamma} \rfloor}^{M-1} \left(\gamma \theta_s \right)^s.
\]

- Meaning: the early mover strategy is at least suboptimal
- \(\implies\) early mover advantage holds for general stubbornness
Beyond complete graph: simulation results

Graphs

Parameters: \(M = 10, K = 6, C = 24, \theta = 0.05 \)

Social power of agent 1 w.r.t \(a_1 \): ind = lexicographical order

- Social power roughly increases along the lexicographical order
- \(\Rightarrow \) early mover advantage still holds!
Why early mover advantage?

- Concatenated FJ model has contracting dynamics
- Closer to consensus, harder to impact the final outcome
- \(\Rightarrow\) early discussions are more important
- \(\Rightarrow\) diminishing return law

Theorem (Diminishing returns)

Let \(\Theta = (\theta_1, \ldots, \theta_n)\) be the strategy profile. It holds for \(\forall i\)

\[
\max_{\Theta} \{ sp_i(s_1 + 1) - sp_i(s_1) \} = (1 - \frac{1}{n}) \prod_{s=1}^{s_1} \max_{j \in V} \theta_j(s)
\]

- The diminishing return law does not depend on how \(a_i\) is associated with \(\theta_i\)
Back to UNFCCC: social power

- The EU has the highest social power for most of the years
- Is the EU using an early mover strategy?
A social power game for the concatenated opinion dynamics with stubborn agents

Model analysis

UNFCCC Negotiations: a few years

[Graphs showing stubbornness and social power for 2009 and 2015]
UNFCCC Negotiations: early mover strategy

Is EU taking early mover advantage?

- null model: reshuffle order in the action $a_{EU} \rightarrow \text{perm}(a_{EU})$
 recompute the social powers

$$\text{mean}(sp_{EU, \text{reshuffled}}) < sp_{EU} \implies \text{the EU is taking an early mover advantage!}$$
Validation: UNFCCC leadership

- To assess leadership in climate negotiations: use survey data from International Negotiations Survey
- → perceived leadership
- data collected in years 2008-2022
- total of 5530 responses
Validation: UNFCCC leadership

To assess leadership in climate negotiations: use survey data from International Negotiations Survey

⇒ perceived leadership
data collected in years 2008-2022
total of 5530 responses

⇒ mean(corr(leaderhship, sp))=0.6
Validation: UNFCCC leadership

- Temporal trend for the EU is captured very well.
- Less precise for other countries like China and US.

Summary: the model-based social powers seem rather close to the perceived leadership!
Summary

- **Concatenated FJ model**
 - a two time scale model representing consecutive FJ discussion events
 - opinions are contracting for each discussion

- **Social power game**
 - strategic game for the concatenated FJ model
 - allocate speaking opportunities to maximize social power

- **Results**
 - Early mover advantage: speaking more in early discussions makes an advantage
 - Diminishing return law: later discussions have lower influence on the social power

- **Application:** UNFCCC, Paris Agreement
A social power game for the concatenated opinion dynamics with stubborn agents

References

Thank You!