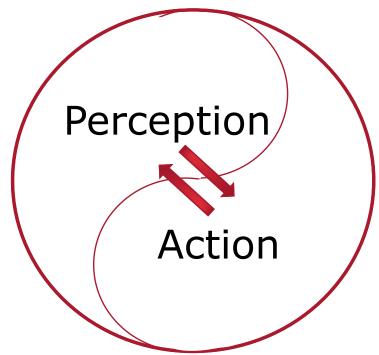


Learning in perception and action loop for efficient manipulation with uncertainty

Jing Xiao
Robotics Engineering Department
Worcester Polytechnic Institute
November 20, 2025



High touch High precision

Learning in Real-world for Manipulation Tasks



Robotic Assembly

Manipulation

beyond pick-and-place

Robotic Assembly

Challenge: Tight tolerance vs. Great uncertainty effect, varied part geometry and complex contact states

Classic approaches:

- passive, active compliance, force, impedance control
- simple-shape, single peg-in-hole tasks

Learning-based approaches:

task-dependent, specific cases

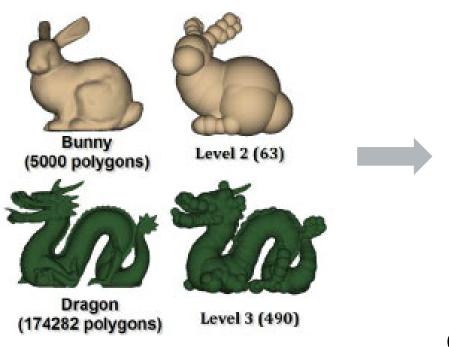
Robotic Assembly

Challenge: Tight tolerance vs. Great uncertainty effect, varied part geometry and complex contact states

Can we have a general and efficient online solution?

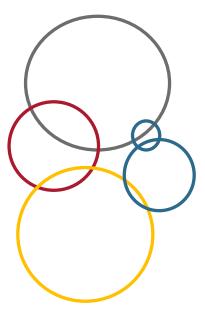
- Efficient representation of contacts
- Perception with learning
- Constrained search

Sphere-Tree Representation



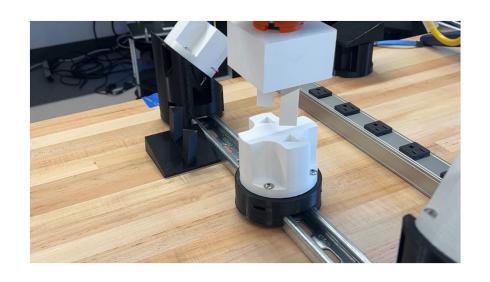
[Wang et al. IEEE ToH 2011]

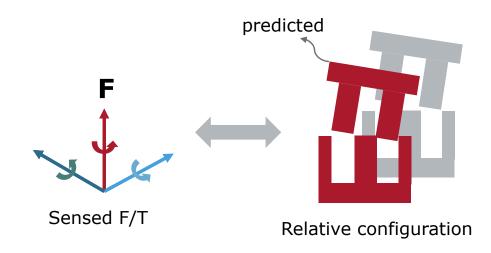
Complex geometry & contacts



Unified contact constraints

"General" Learning to Perceive Contact Config.

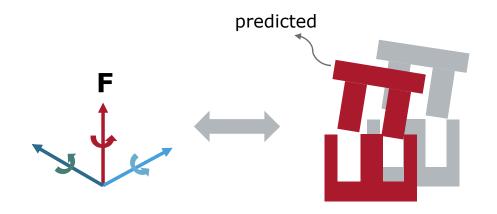




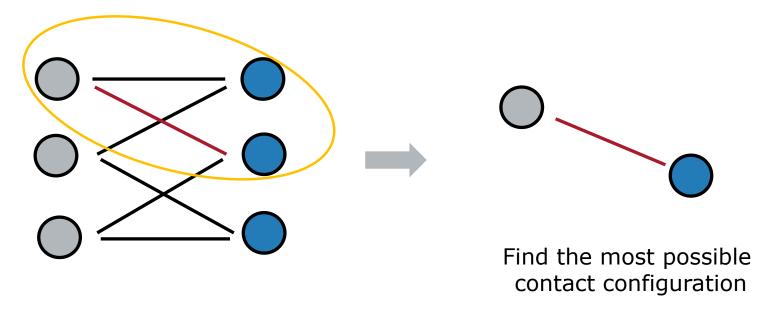
Automatic data collection

"General" Learning to perceive contact config.

- Object-independent: learned NN applies to different object assembly
- Robot-independent: learned mapping is to relative configurations in Cartesian space

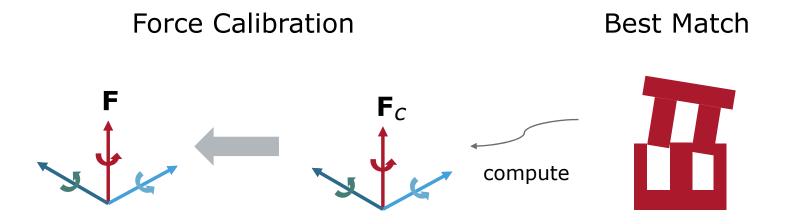


Constrained Search to Resolve Ambiguity



$$\begin{cases} \text{minimize } E(q, q^*) \\ \text{subject to } S_{obj_1} \bigcap S_{obj_2} = \varnothing \end{cases}$$

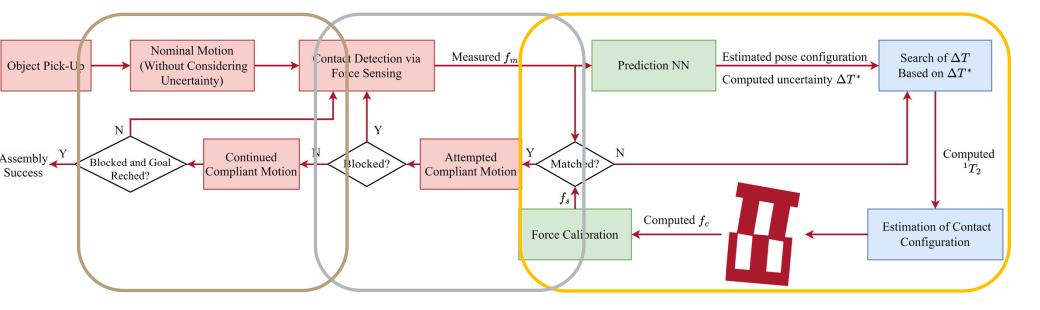
Closing the Loop by Learning



Actual speed

Robust to uncertainty > 10 times of task tolerance

Perception-Action Loops



Red: sensing and robot actions

Green: learned modelsBlue: online algorithms

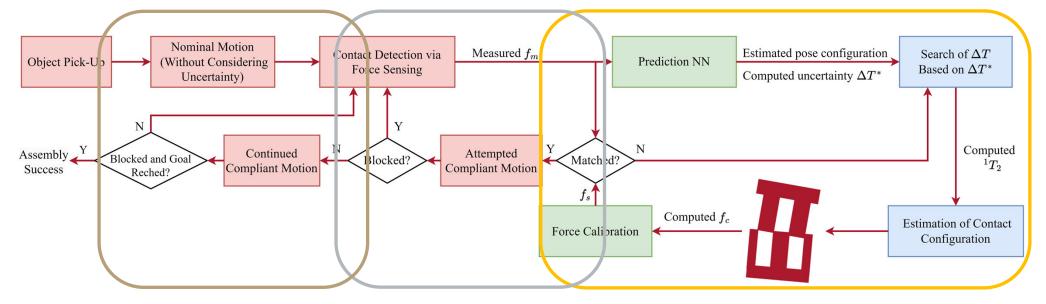
Average runtime for mixed-shape 4-peg-in-hole assembly (randomized uncertainty offset in each run)

#	Zone	Insertion	Average time \pm SD (s)	Success	
"	Zone	angle	pickup & assembly	within 60s	
1	$\mathbf{P_1} o \mathbf{A_1}$	0°	16.0 ± 0.72	20/20	
2	$\mathbf{P_1} \to \mathbf{A_1}$	20°	17.4 ± 0.89	19/20	
3	$\mathbf{P_1} o \mathbf{A_1}$	25°	16.2 ± 0.64	19/20	
4	$\mathbf{P_1} \rightarrow \mathbf{A_2}$	0°	15.8 ± 0.78	20/20] `
5	$\mathbf{P_2} ightarrow \mathbf{A_2}$	25°	15.8 ± 0.85	20/20	
6	${f P_2} ightarrow {f A_3}$	0°	17.6 ± 0.71	20/20	
7	$\mathbf{P_2} ightarrow \mathbf{A_3}$	90°	17.2 ± 0.66	18/20	
8	$\mathbf{P_2} ightarrow \mathbf{A_3}$	25°	17.8 ± 0.91	19/20	

Runtime > 60s (very large uncertainty)

Case	#2	#3	#7	#8
#Runs	1	1	2	1
Max time to succeed (minutes)	2.08	1.3	2.57	3.08

Perception-Action Loops





Actual speed

Zoom-in view

Zoom-out view

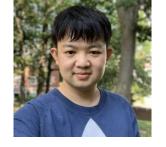
Clearance:

• Position: 0.25mm

Orientation: 0.016rad

Robust to uncertainty > 10 times of task tolerance

Shichen Cao and Jing Xiao, "On efficient and flexible autonomous robotic insertion assembly in the presence of uncertainty," IEEE Robotics and Automation Letters, 2024.



Jing Xiao

Dynamic Dense Packing of Novel Objects



RGB-D perception & model building

Robotic insertion assembly

Real-time Dense Packing of Novel Objects

RGB-D Perception

- Object model
- Object Pose

Rough, imprecise model

Dense Packing Planning

- Maximizing space
- Optimizing motion path

Use rough models

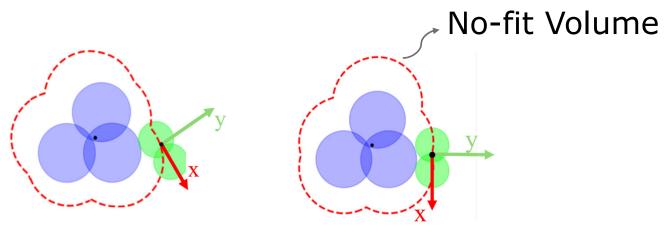
Insertion with F/T Sensing

- Contact state prediction
- Compliant motion

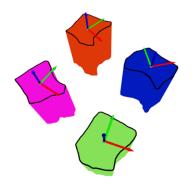
Handle effects of inaccuracies and uncertainties

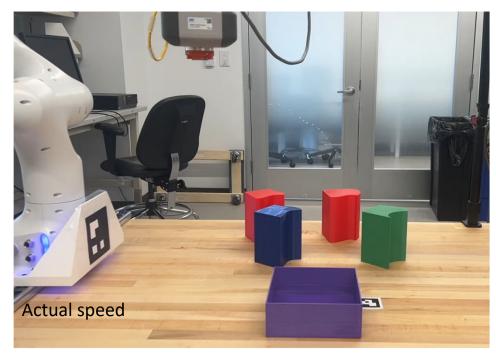
Packing Planning

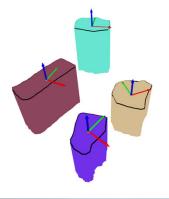
Sequencing: prioritize objects short, large, difficult to fit

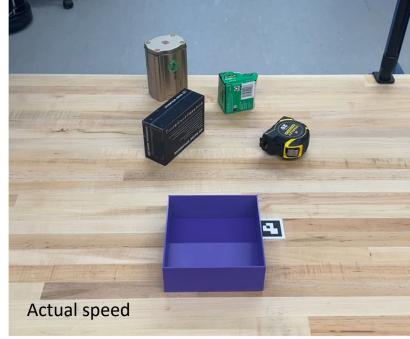


Pose optimization: maximize available space









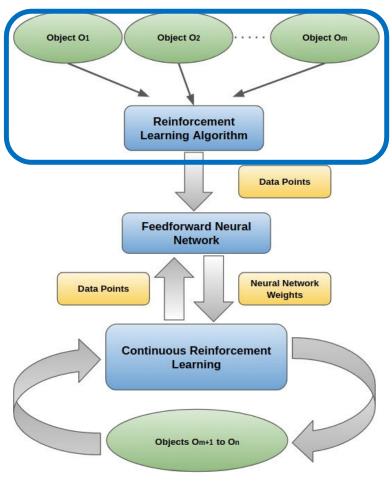
Jing Xiao

Multi-layer and Deformable Packing

Learning through Automatic Manipulation

Sean McGovern and Jing Xiao, "Learning and Predicting Center of Mass through Manipulation and Torque Sensing," *IEEE Inter Conf on Mechatronics and Robotics Engin*, 2022.

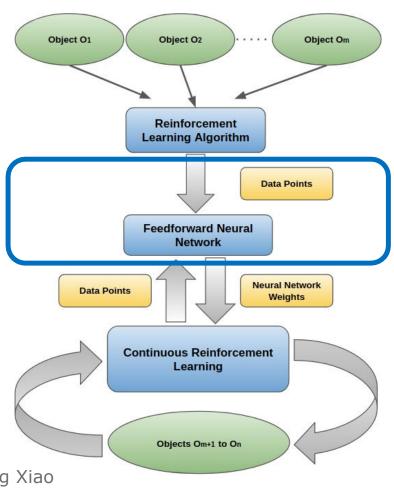
Approach



Reinforcement Learning Algorithm online:

- State: pick-up location on object and bounding box dimensions
- Reward: based on torque sensing
- Learns CoM along primary axis over several pick-up steps
- Robust to uncertainties in sensors/hardware

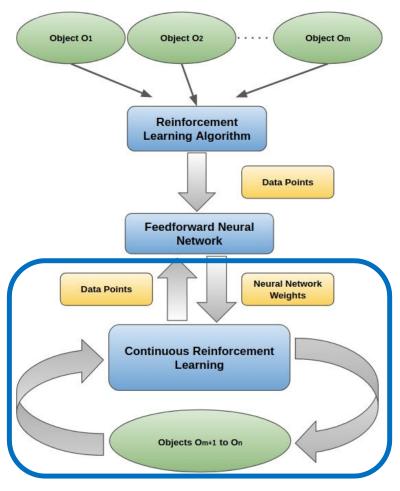
Approach



Feedforward Neural Network:

- Use <input, CoM> data points from RL for training.
- Trained FNN is used for CoM predictions of new objects.

Approach



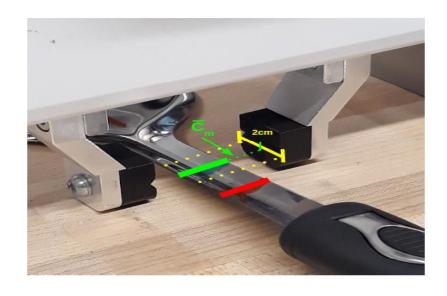
Continuous Reinforcement Learning (online):

- Use CoM prediction initially.
- Further RL to determine CoM.
- New data points from RL updates FNN.

Example

Red: center

Green: center of mass (CoM)



End-effector pick-up resolution

Reinforcement Learning Results (Stage 1)

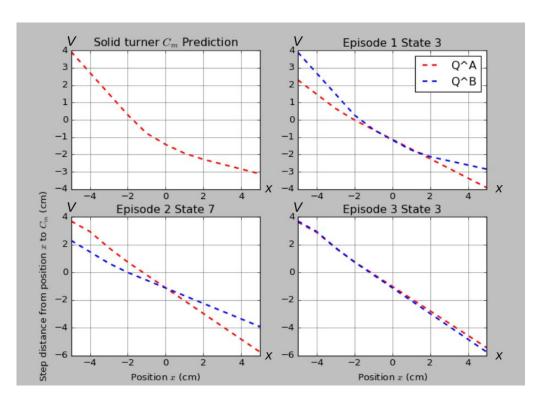
Utensil #	Learned C_m (cm)	Range	Learning time
		$\overline{C}_m \pm 1$ (cm)	in # of Steps
#1	-1.8	[-3.5, -1.5]	51 Steps
#2	-0.4	[-0.5, 1.5]	24 Steps
#3	3.7	[2.0, 4.0]	41 Steps
#4	-1.7	[-2.5, -0.5]	30 Steps
#5	0.5	[-1.5, 0.5]	22 Steps
#6	0.0	[-2.0, 0.0]	20 Steps
#7	0.7	[0.5, 2.5]	24 Steps
#8	0.5	[-1.0, 1.0]	16 Steps

Ladle (#1)

FNN Prediction Results (Stage 2, trained by data from #1-#3)

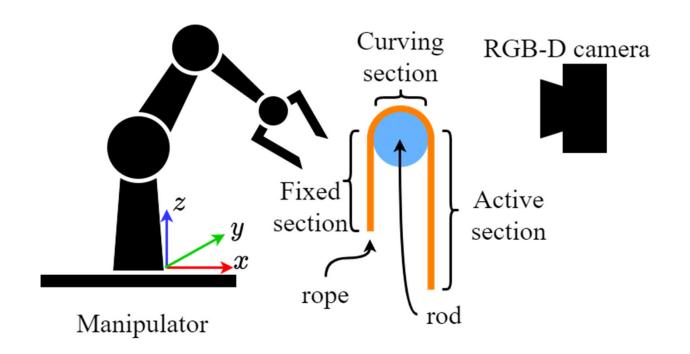
Utensil #	Prediction C_m (cm)	Range	In range?	
		$\overline{C}_m \pm 1$ (cm)		
#4	-1.4	[-2.5, -0.5]	Y	
#5	-2.7	[-1.5, 0.5]	N	
#6	-1.4	[-2.0, 0.0]	Y	
#7	2.3	[0.5, 2.5]	Y	
#8	-2.1	[-1.0, 1.0]	N	

Continuous RL Results (Stage 3)



9 total steps over 3 episodes

Novel Rope Wrapping

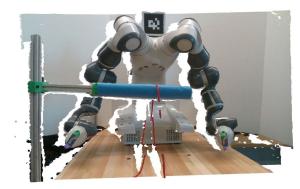


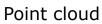
No prior information of rod and rope!

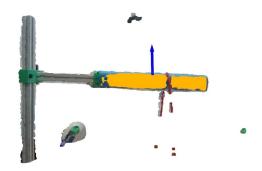
No simulation!

Zhaoyuan Ma and Jing Xiao, "Robotic Perception-motion Synergy for Novel Rope Wrapping Tasks," *IEEE Robotics and Automation Letters*, 2023.

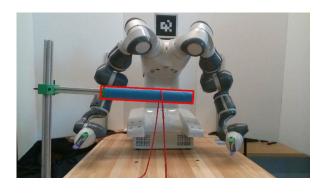
Rod and Rope Estimation





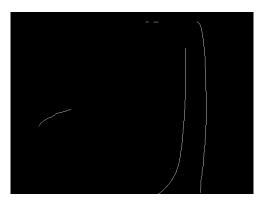


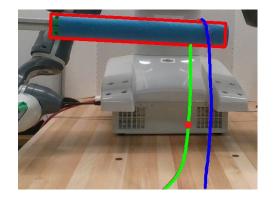
3D half cylinder matched (Rod)



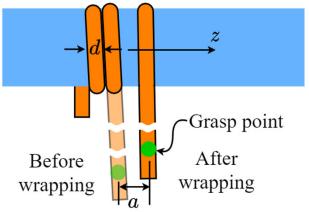
Contour found (Rope)

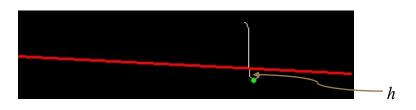
Single Wrap: Grasp Point Selection





Online Learning to Improve Wrapping Motion (perception & control)





Update height:

$$R_{n+1} = R_n - K_{PR} \cdot q_r$$
, where $q_r = h - t_R$

Update advance:

$$a_{n+1} = a_n - K_{Pa} \cdot q_a$$
, where $q_a = S_g/(S_g + S_r)$

Training Session (rod1, R=21mm)

Training session with Rod1: adjust values of R, L', and a.

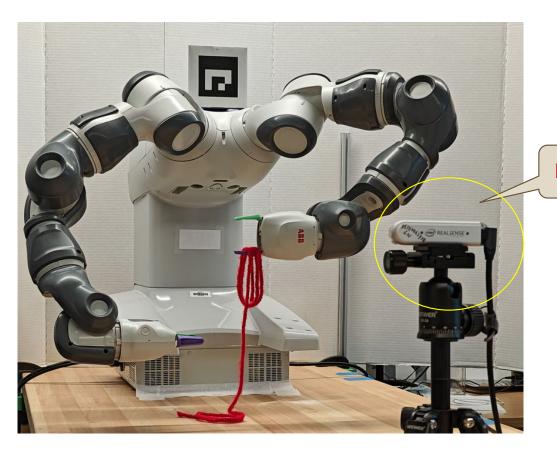
Testing (rod1)

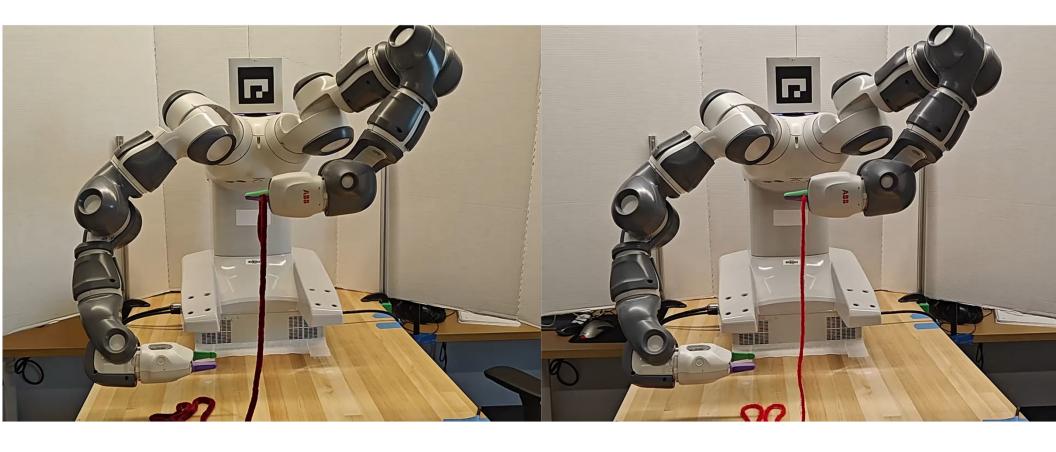
Testing session with Rod1: apply adjusted R, L', and a.

Testing (rod2, R=16.9mm)

Testing session with Rod2: apply adjusted R, L', and a.

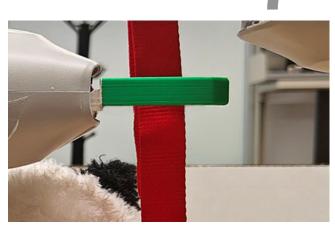
General Deformable Linear Object Manipulation



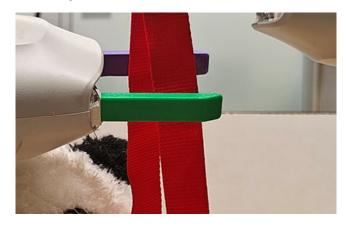


No simulation
No object modeling

Motion for Perception

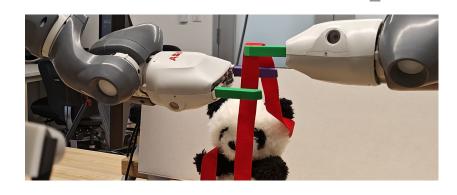


Rear ribbon & finger occluded



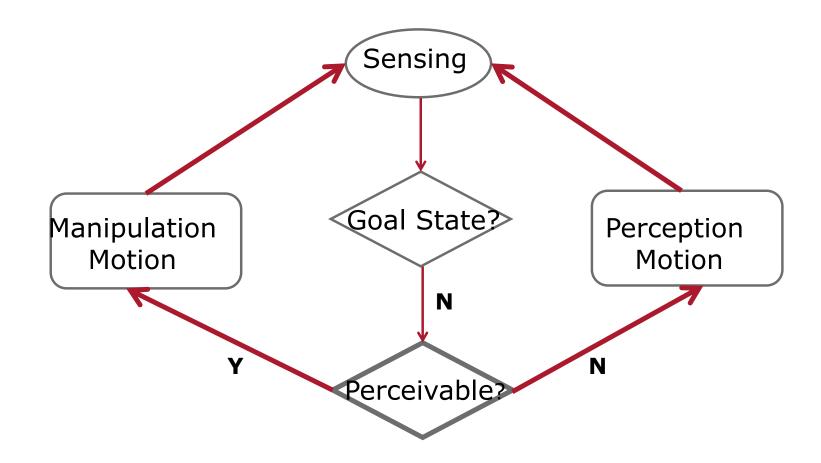
Rear ribbon & finger visible

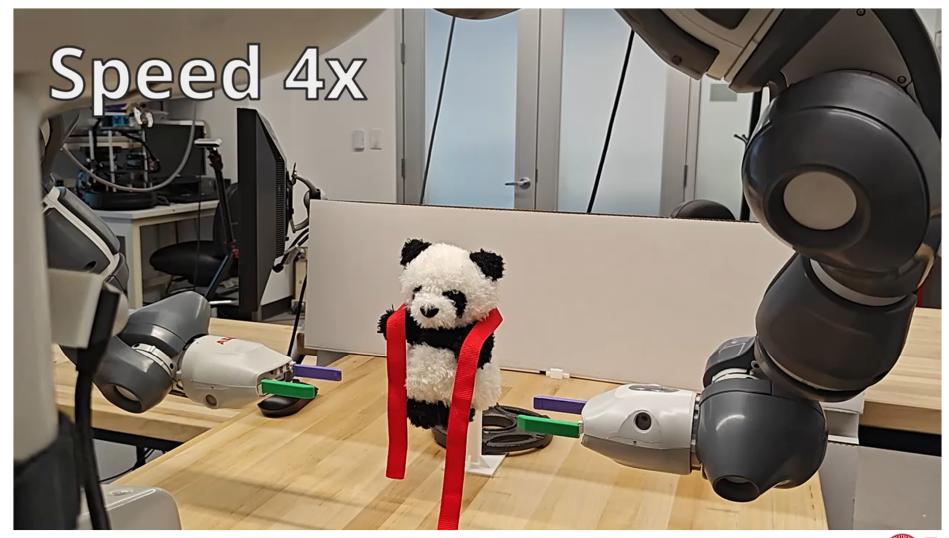
Motion for Manipulation



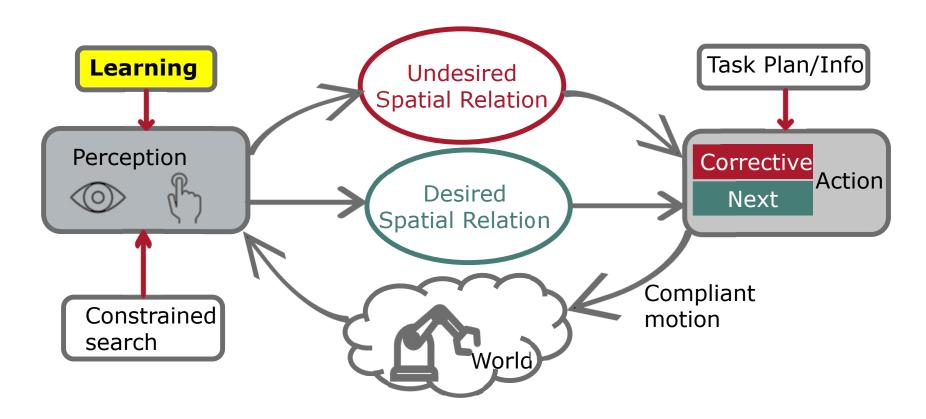
Spatial relation 1: one ribbon between the left fingers

Spatial relation 2: both ribbons between the left fingers



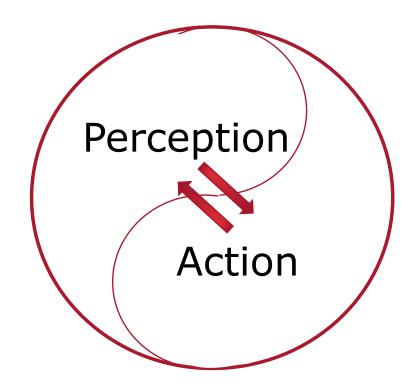


Learning is Crucial for Handling Uncertainties



Learning is Crucial for Handling Uncertainties

- Learning for better perception under uncertainty
 - ✓ How to be efficient and general?
- Learning unknowns through automatic manipulation
 - ✓ RL or feedback control
- Perception-action feedback loop
- 3....
- ✓ Closed-loop to minimize undesired effects



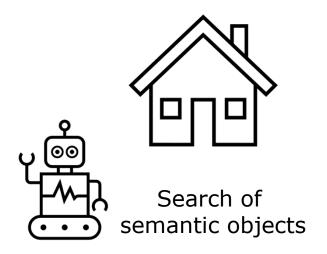
High Touch and **High Precision**

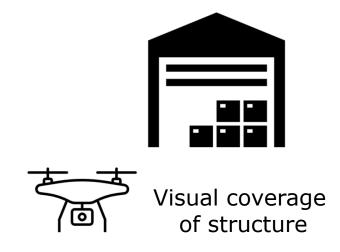
Acknowledgement

NSF I/UCRC on Robots and Sensors for Human Well-being (ROSE-HUB)

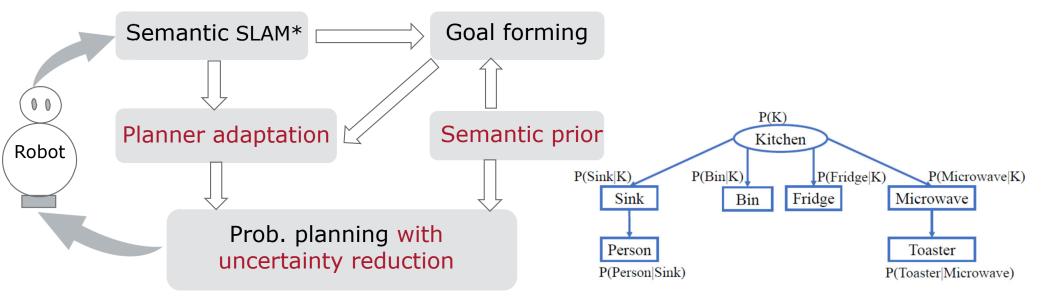
Amazon Robotics

Search and Exploration Tasks





Autonomous Search of Semantic Objects



*[Z. Qian, K. Patath, J. Fu, and J. Xiao, ICRA 2021][Z. Qian. J. Fu, and J. Xiao. RAL 2022]

Zhentian Qian, Jie Fu, and Jing Xiao, "Simultaneously Search and Localize Semantic Objects in Unknown Environments," *IEEE Robotics and Automation Letters*, October 2024.

Visual Coverage for Unknown Structure

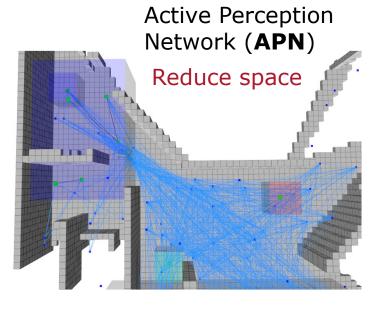
Autonomous robot

Large complex unknown environment

Real-time

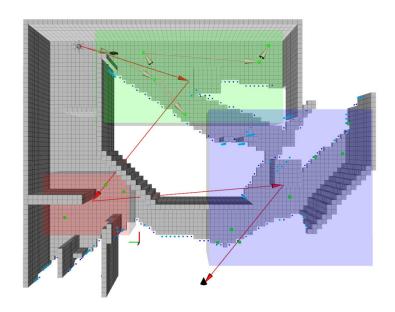
- perception
- mapping
- planning
- Motion with limited resources

Approach

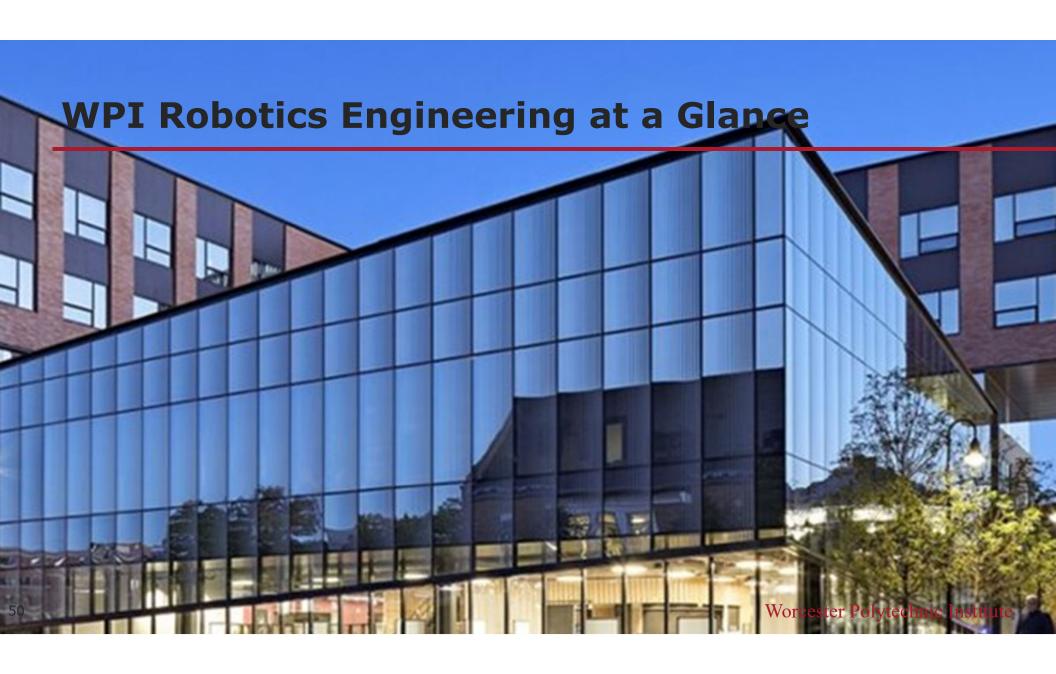


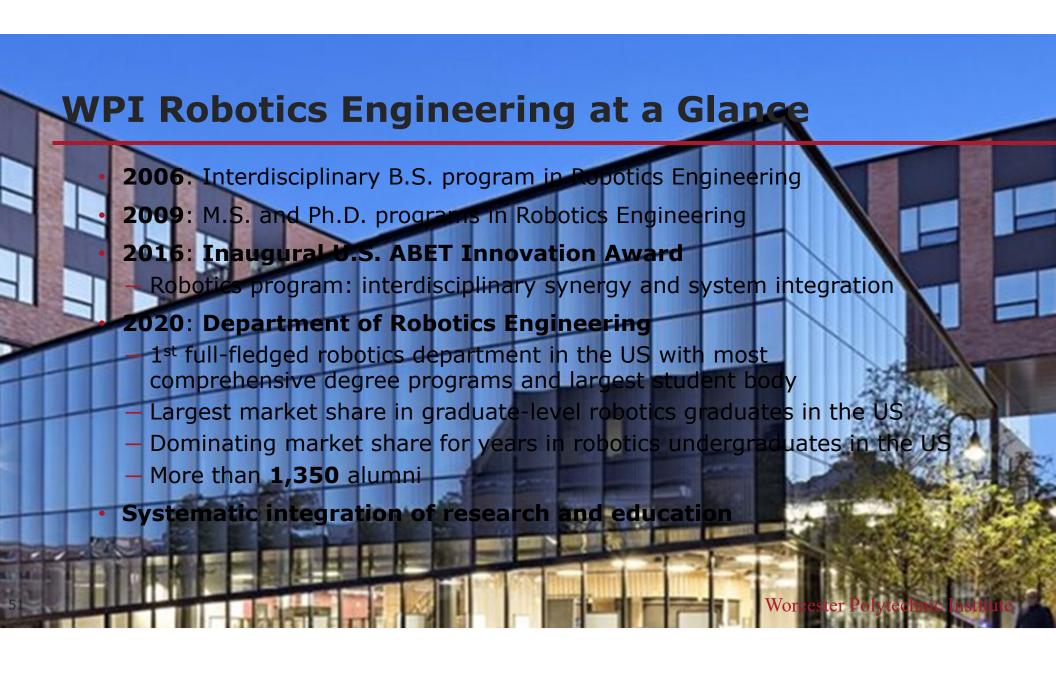
Differential Regulation (**DFR**) Reduce time

Non-myopic APN
Planner (**APN-P**)
Enable real-time visual coverage tour planning



David Vutetakis and Jing Xiao, "Active Perception Network for Non-Myopic Online Exploration and Visual Surface Coverage," *International Journal of Robotics Research*, June 2024





Research Groups

CONTACT Location: Unity Hall Phone: 508-831-6665 rbeawoledu

https://www.wpi.edu/academics /departments/roboticsengineering/research/groups

Adaptive and Intelligent Robotics (AIR) Lab

Prof. Jing Xiao

UH 200E

Real-time perception-based robotic assembly; Manipulation; Navigation in uncertain or unknown environments

Aerial-robot Control and Perception

Prof. Guanrui Li

UH 100A

Aerial Robots; Multi-Robots System; Aerial Manipulation; Optimal Control

Automata Lah Prof. Kevin Leahy

Formal methods; Artificial Intelligence; Autonomous Systems; Planning and Control

Efficient Learning and Planning for

Intelligent Systems (ELPIS) Lab

Automation and Interventional Medicine (AIM) Lab

Prof. Gregory Fischer

Robotics (COMET) Lab **Prof. Loris Fichera**

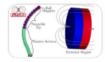
Cognitive Medical Technology and

Prof. Constantinos Chamzas

50P 4th Floor

robotic surgery; Assistive technology

Medical robotics; Image-guided surgery; Surgical robotics; Continuum surgical Learning for Efficient Planning; Planning MRI-compatible mechatronics; Intelligent robots; Energy-based surgical instruments; under Uncertainty; Visual-Based Planning; Lifesaving technologies Learning Abstractions for Planning



Prof. Giovanni Pittiglio

50P 4th Floor

Medical Robots; Medical Devices: Minimally Invasive Medicine

Multimodal multilateral human-robot interaction and interfaces: Shared autonomous nursing robots; Workloadadaptive human-robot collaboration

Prof. Berk Calli

UH 200D

Robotics Manipulation; Environmental Robotics: Vision-based Control: Robot Dexterity

Medical Frontier Ultrasound Imaging and Robotic Instrumentation (FUSION) Lab

Prof. Haichong Zhang

50P 4th Floor

Robotics for healthcare; Ultrasound and photoacoustic imaging; Image-guided intervention; Human-robot interface

Novel Engineering of Swarm Technologies (NEST) Lab

Prof. Carlo Pinciroli

UH 200C

Artificial intelligence;

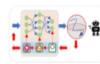
Perception and Autonomous (PeAR) Group

Swarm robotics; Multi-robot systems; Software engineering

Prof. Nitin J. Sanket

UH 100B

Artificial Intelligence; Aerial Robotics; Computer Vision; Deep Learning: Learning For Autonomy



PracticePoint

Prof. Gregory Fischer

50P 4th Floor

Surigcal robotics; Image guided therapy; Nursing Robotics; Rehabilitation robotics;

Principled Rigid-Soft Mechanisms (PRISM) Lab

Prof. Connor McCann

UH 100F Floor

Prof. Wei Xiao

UH 200F

Safe Autonomy and Intelligence Lab

(SAIL)

Mechanism design; Soft robotics; Bioinspired robotics

Safety-Critical Control Theory; Machine Wearable robotics; Robotic manipulation; Learning; Multi-Agent Systems; Al-Enabled

Socially Intelligent Robotics for Healthcare (RoboCare) Lab

Prof. Fengpei (Fiona) Yuan

UH 100D

Soft Robotics Lab Prof. Cagdas Onal

UH 100E

Soft continuum robots; Origami robots;

Thank you!

Robotics Engineering | Worcester Polytechnic Institute (rbe.wpi.edu)

