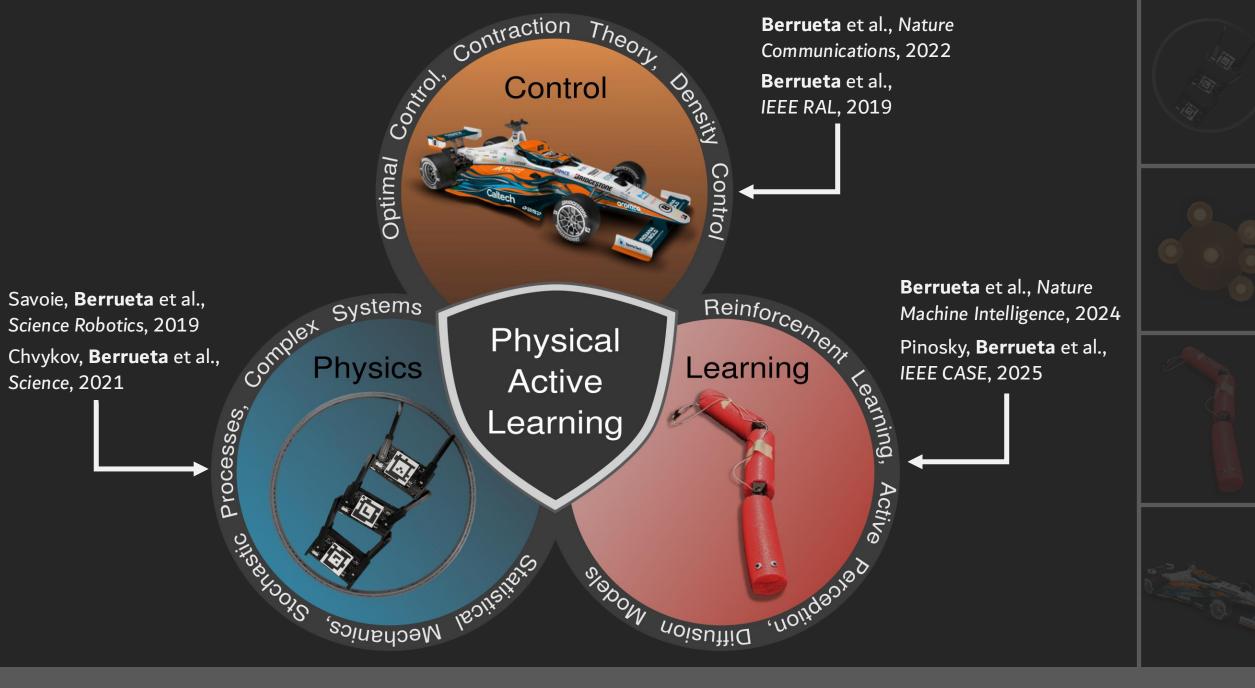
Robot learning on the edge

Online learning in hardware

Thomas A. Berrueta

Postdoctoral Scholar, Computing + Mathematical Sciences ELLIIT Robot Learning Symposium (2025/11/19)

Caltech



INDY CAST

LAP 1 89.556

LAP 2 100.547

LAP 3 110.962

LAP 4 111.436

LAP 5 121.915

LAP 6 122.360

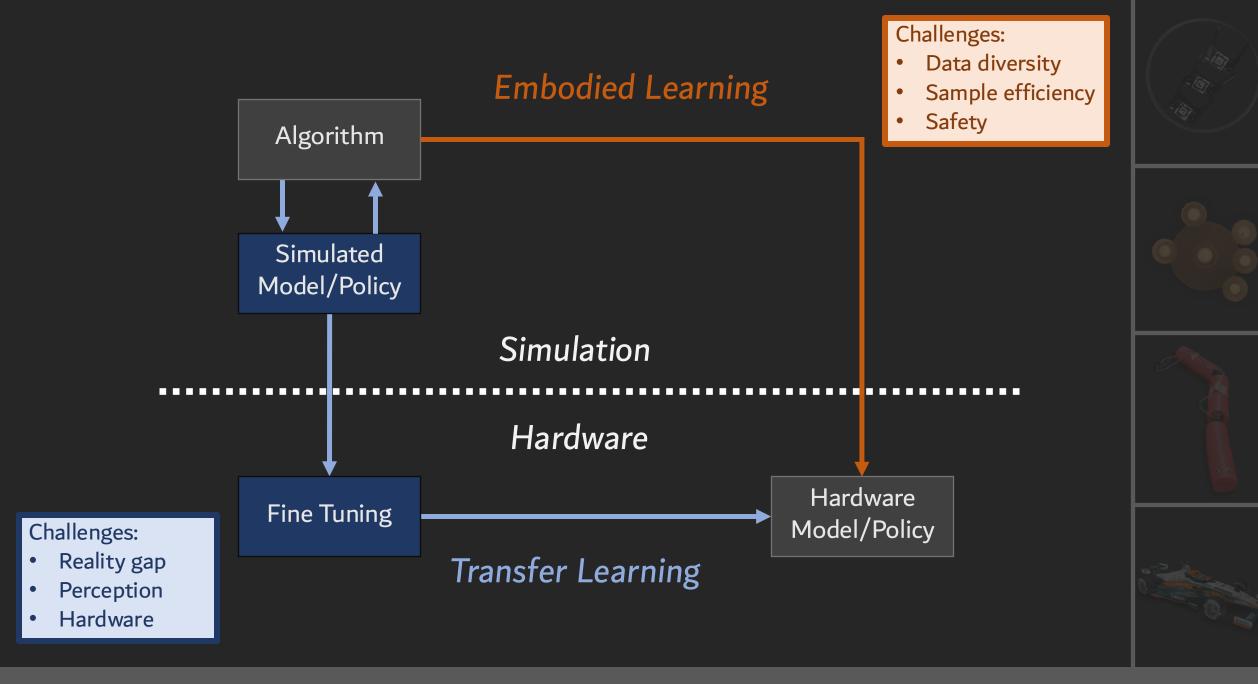
LAP 7 133.129

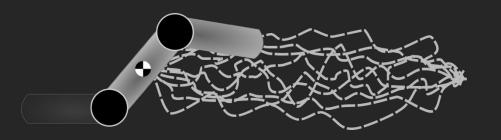
LAP 8 133.514

LAP 9 144.130

CAST Racer

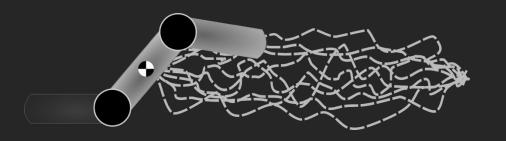
THROTTLE BRAKE
SPEED 146.4 mph GEAR 5 RPM 5704





Path decorrelation for efficient online learning

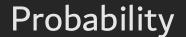
Operational safety through modular design

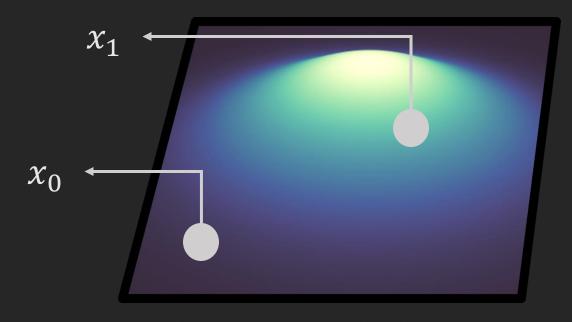


Path decorrelation for efficient online learning

Operational safety through modular design

Physics gets in the way of data diversity



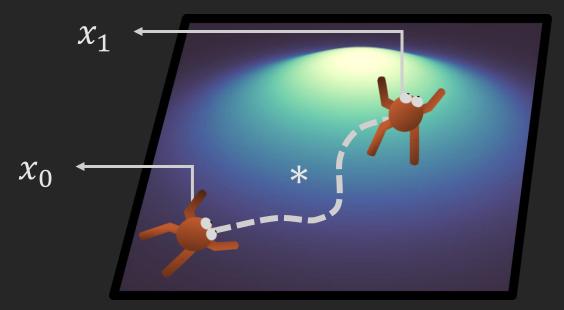


$$p(x_0, x_1) = p(x_1)p(x_0)$$

$$S[p(x_0, x_1)] = S[p(x_1)] + S[p(x_0)]$$

Physics gets in the way of data diversity

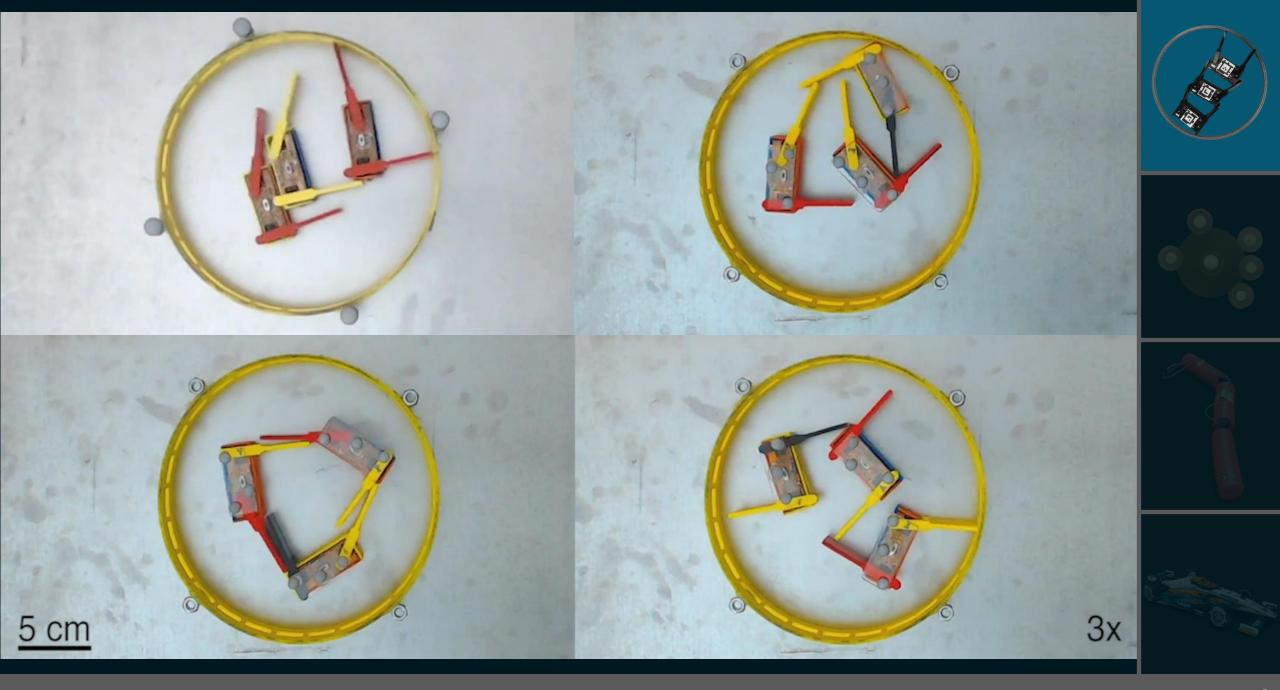
Probability

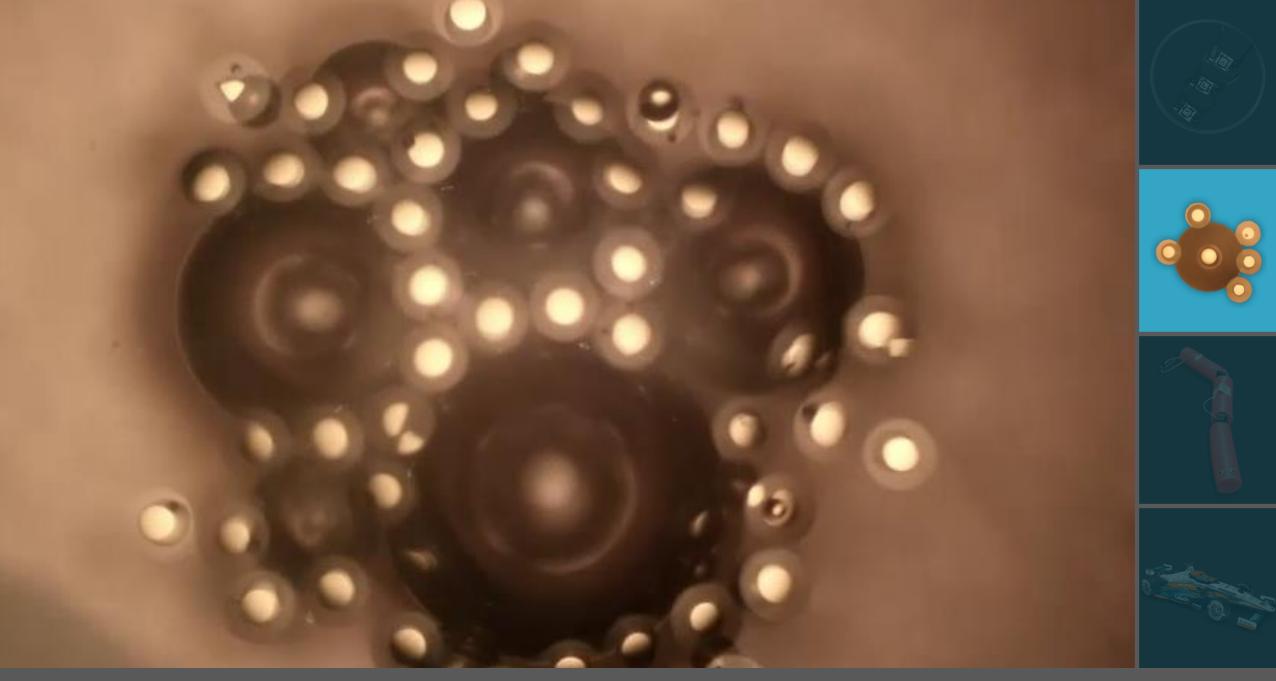


* Transitions along path distribution (i.e., dynamics)

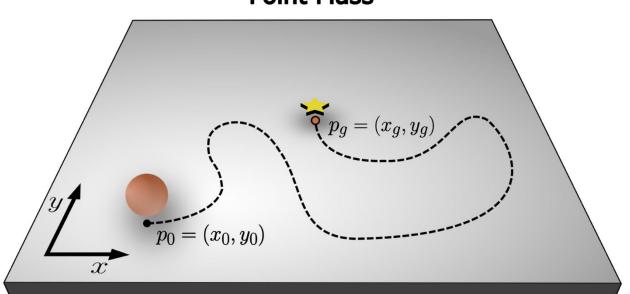
$$p(x_0, x_1) = p(x_1|x_0)p(x_0)$$

$$S[p(x_0, x_1)] \le S[p(x_1)] + S[p(x_0)]$$



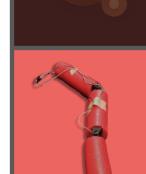


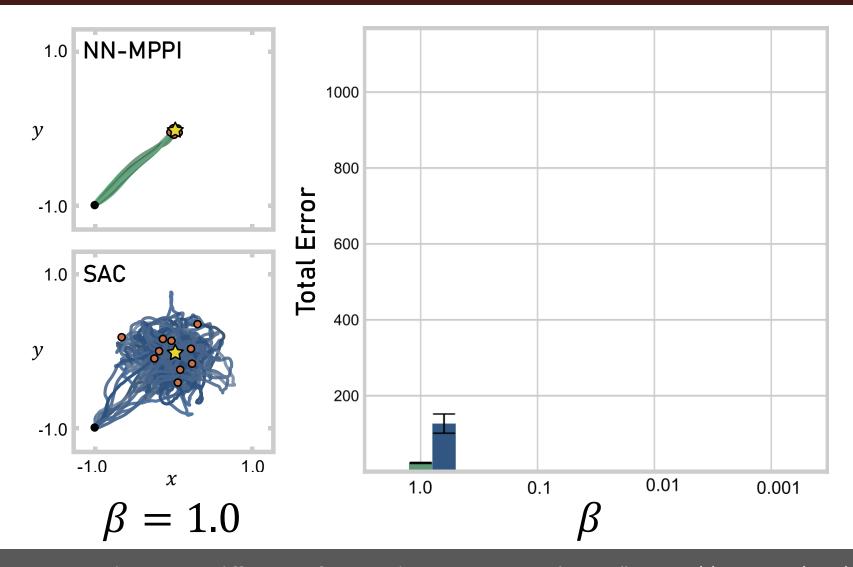
Berrueta, et al., "Emergent microrobotic oscillators via asymmetry-induced order," Nature Communications, 13 (1), 1-11 (2022)

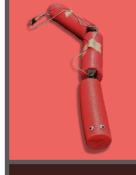


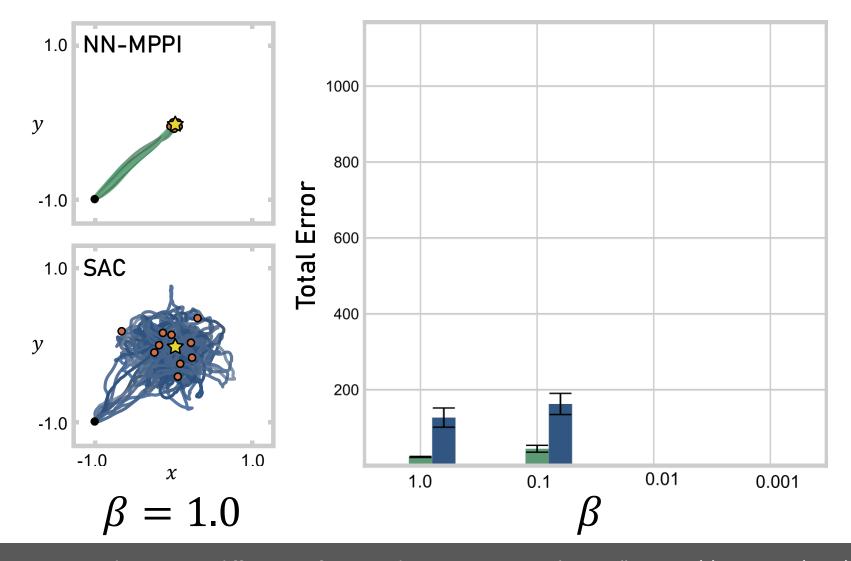
Dynamics:
$$\vec{x}_{t+1} = A\vec{x}_t + B\vec{u}_t$$

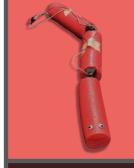
$$m{A} = egin{bmatrix} 1 & 0 & m{eta} & 0 \ 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \quad m{B} = egin{bmatrix} 0 & 0 \ 0 & 0 \ 1 & 0 \ 0 & 1 \end{bmatrix}$$

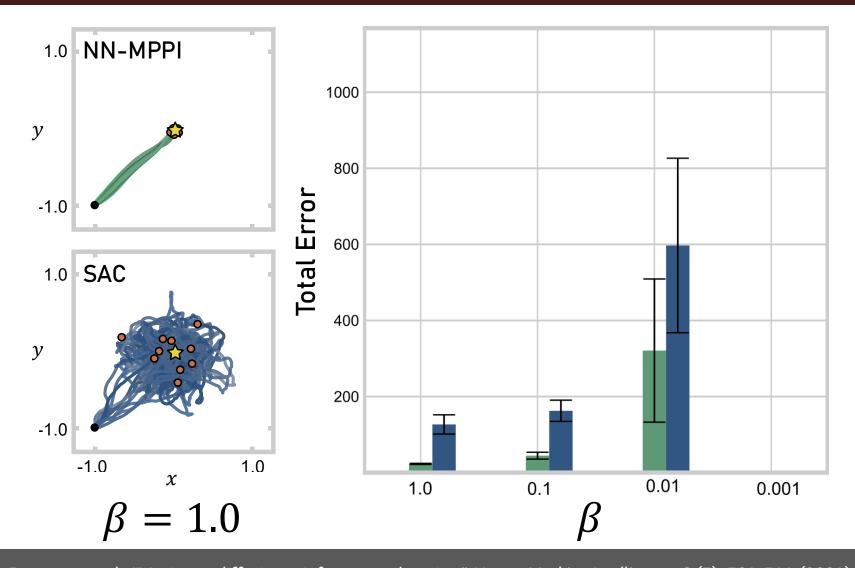


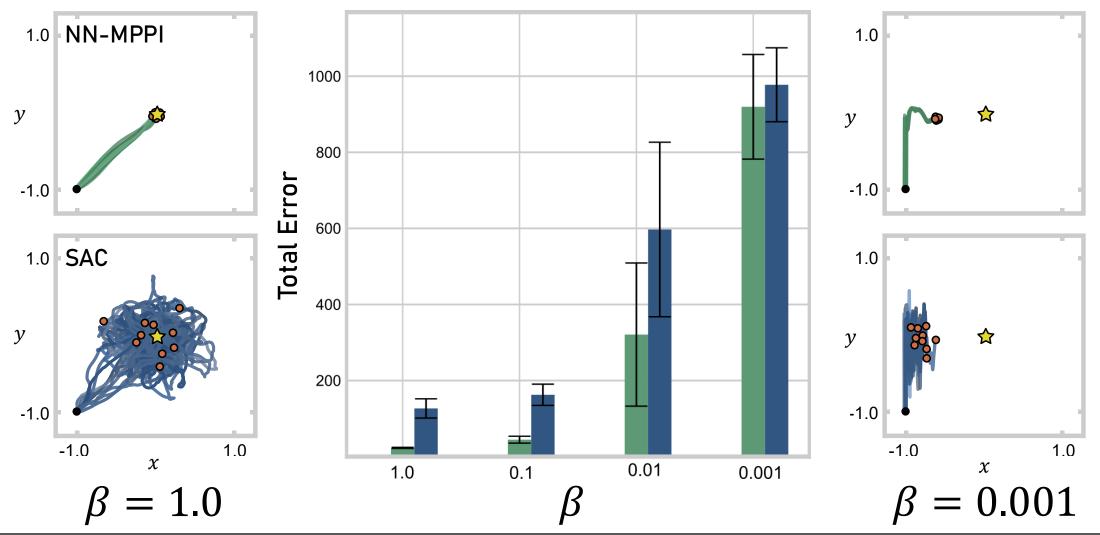






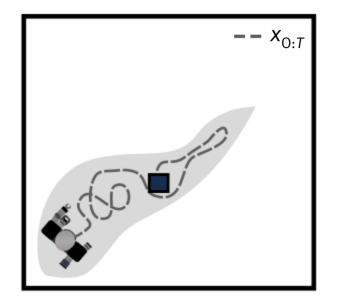






- Entropy maximization as a means of sample path decorrelation.
- However, this is intractable for general unknown dynamics.

$$P[x_{0:T}] = p(x_0) \prod_{t=0}^{T} p(x_{t+1}|x_t)$$



 $\underset{P[x_{0:T}]}{\operatorname{argmax}} S[P[x_{0:T}]]$

 $P_{\max}[x_{0:T}]$



$$\underset{P[x_{0:T}]}{\operatorname{argmax}} - \int P[x_{0:T}] \log P[x_{0:T}] \mathcal{D} x_{0:T} - \lambda_0 \left(\int P[x_{0:T}] \mathcal{D} x_{0:T} - 1 \right)$$

$$-\int Tr\Big(\Lambda(x^*)^{\intercal}\big(\langle\Delta x_{0:T}^2\rangle_{x^*}-\mathbf{C}[x^*]\big)\Big)dx^*$$

where:

$$\langle \Delta x_{0:T}^2 \rangle_{x^*} = \int P[x_{0:T}] \left[\sum_{i=0}^T (x_{i+1} - x_i)^{\intercal} (x_{i+1} - x_i) \delta(x_i - x^*) \right] \mathcal{D}x_{0:T}$$

$$\mathbf{C}[x^*] = \sum_{ au=t_i}^{t_i+\Delta t} K_{XX}(t_i, au), \;\; (w/x_{t_i}=x^*)$$

For systems with continuous sample paths, we can prove that:

$$\max_{P} S[P[x_{0:T}]] \leq \sum_{t=0}^{T} \frac{1}{2} \log \det \mathbf{C}[x_t] \propto \frac{\log \text{-Volume of locally reachable states}}{1 + \log t}$$

which is a concave and easily computable quantity.

Optimizing this expression leads to <u>diffusive exploration</u>, because its optimum describes the sample paths of a class of diffusion processes.

Maximum diffusion reinforcement learning

• To illustrate these results, we developed an RL pipeline based on our derivations:

$$\operatorname*{argmax}_{\pi} E_{p,\pi} \left[\sum_{t=0}^{T} \hat{r}(x_t, u_t) \right]$$

• The rewards are augmented with a term that decorrelates sample paths:

$$\hat{r}(x_t, u_t) = r(x_t, u_t) + \frac{\alpha}{2} \log \det \mathbf{C}[x_t]$$

• Agents that optimize MaxDiff objectives are <u>ergodic</u> and asymptotically inherit robustness and online learning guarantees.

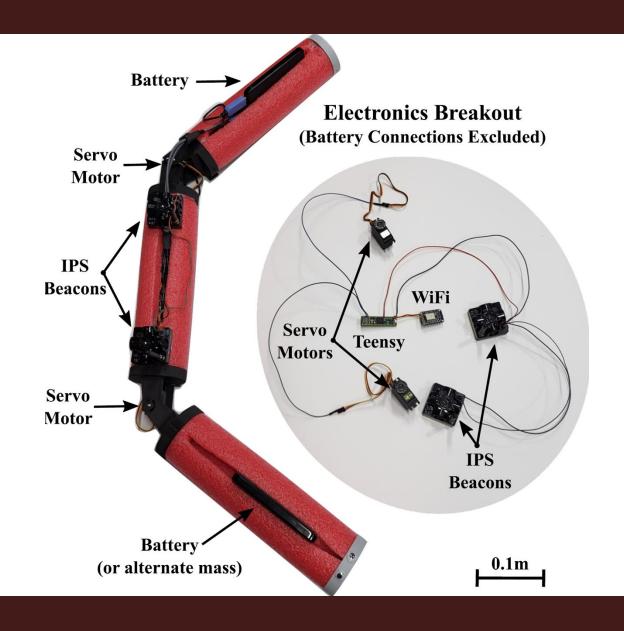
Maximum diffusion reinforcement learning

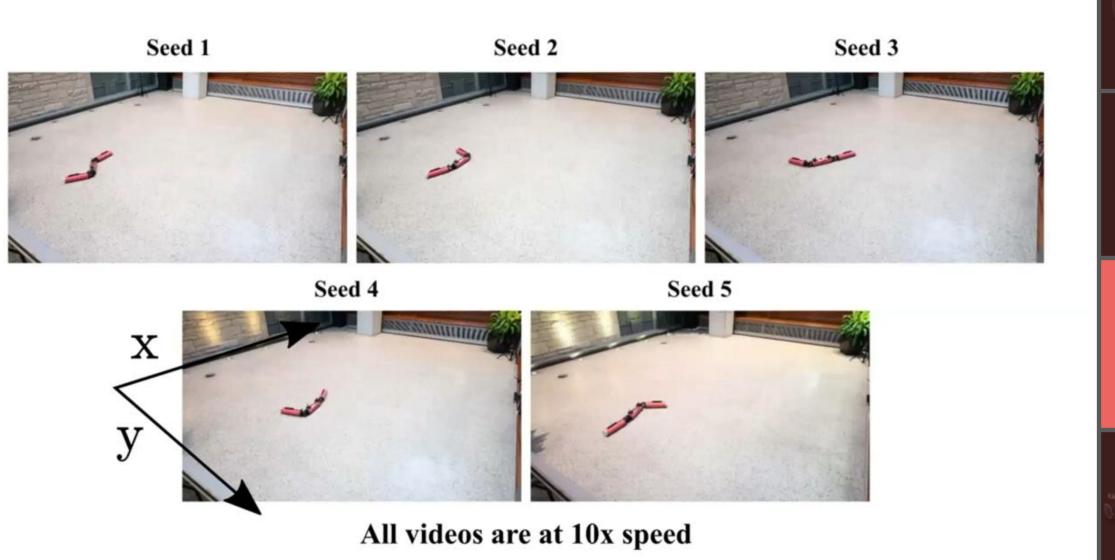
Theorem 2. (MaxDiff RL Agents are Reliable) If there exists a PAC-MDP algorithm with policy π^{\max} , then the Markov chain induced by π^{\max} is ergodic and π^{\max} will be ϵ -optimal regardless of initialization.

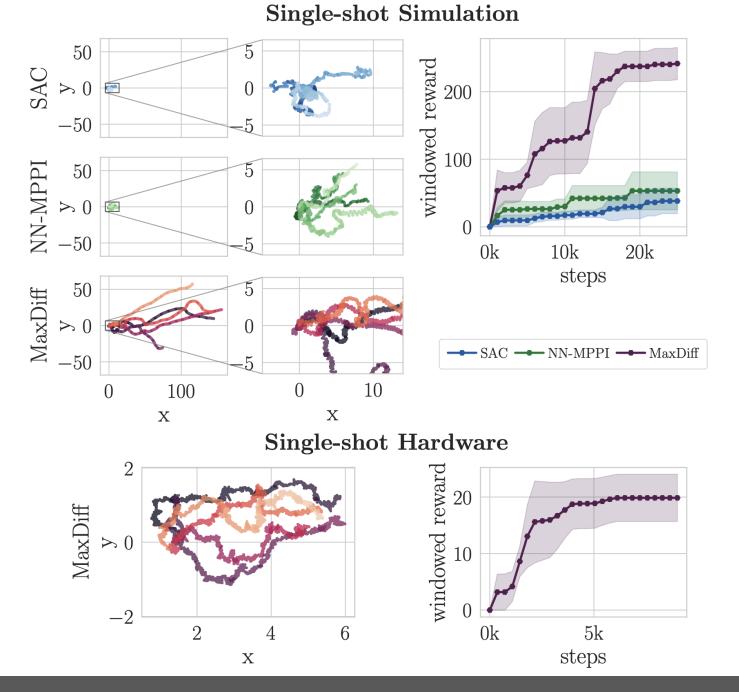
Theorem 3. (MaxDiff RL Agents can Learn in Single-Shot) If there exists a PAC-MDP algorithm with policy π^{\max} , then the Markov chain induced by π^{\max} is ergodic and any realization of π^{\max} will asymptotically achieve the same ϵ -optimality as an ensemble.

• To be <u>PAC-MDP</u> is ϵ -optimal $(1 - \delta)$ -percent of the time:

$$\Pr(\mathcal{V}_{\pi^*}(x_0) - \mathcal{V}_{\pi^{\max}}(x_0) \le \epsilon) \ge 1 - \delta$$

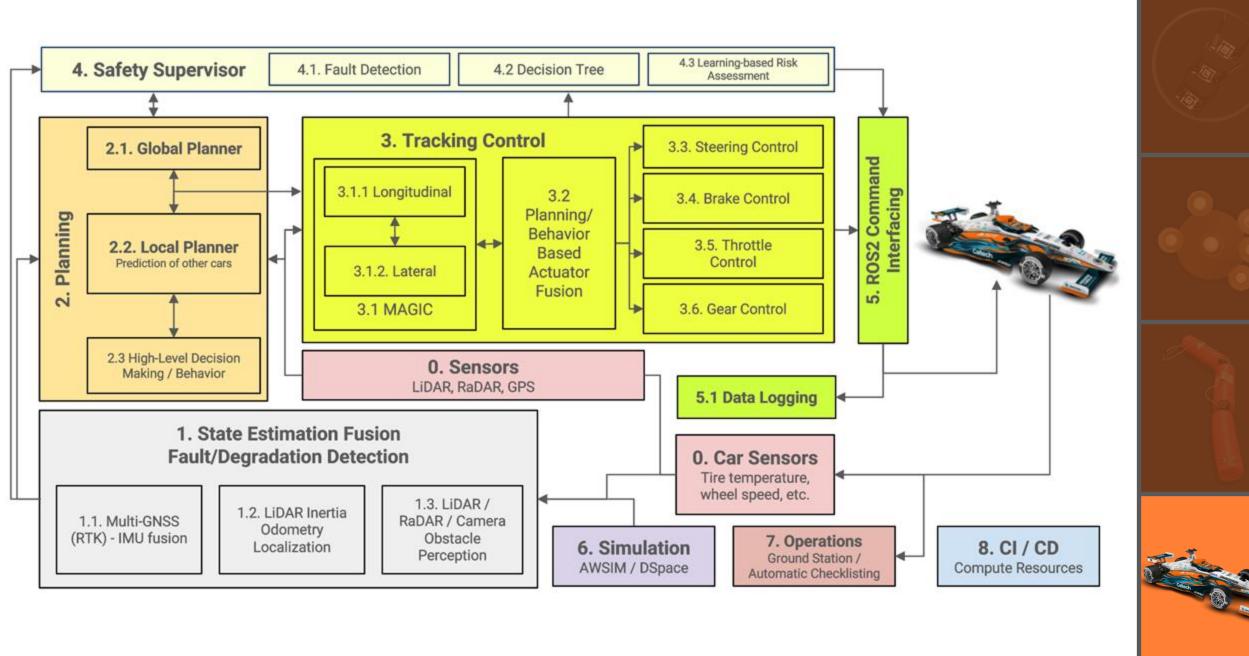




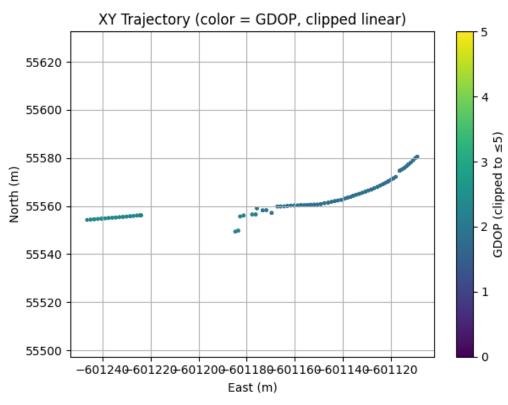


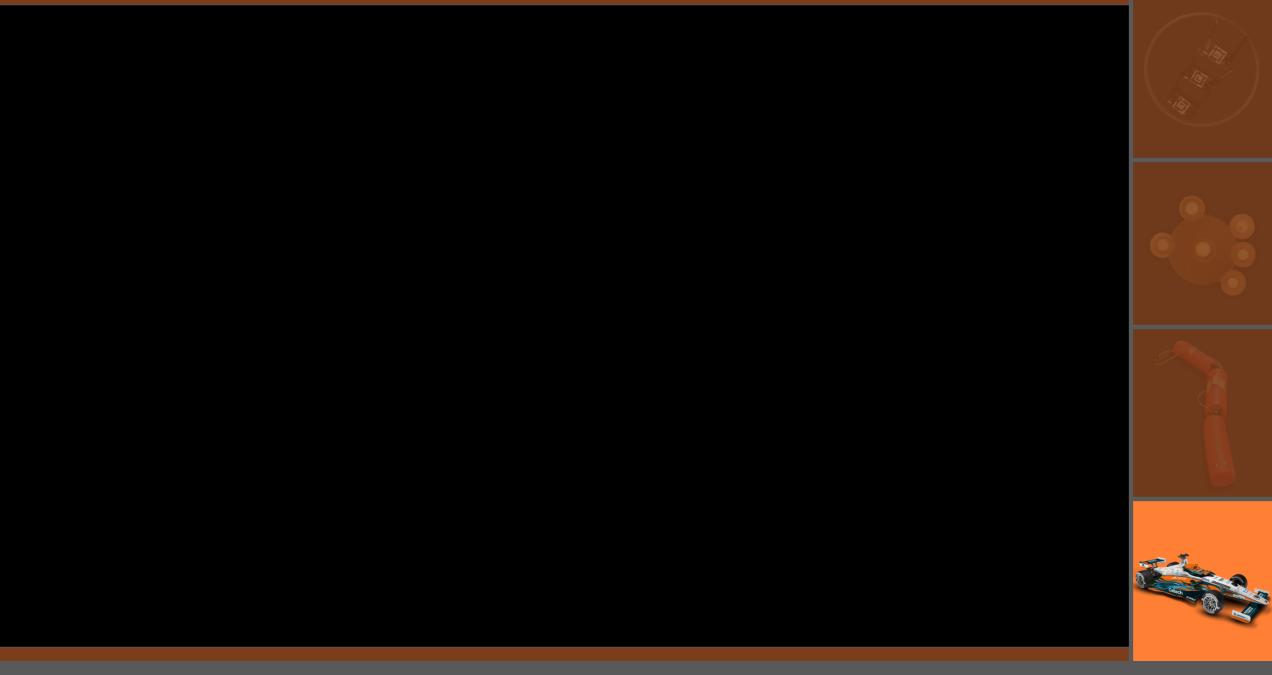
Path decorrelation for efficient online learning

Operational safety through modular design

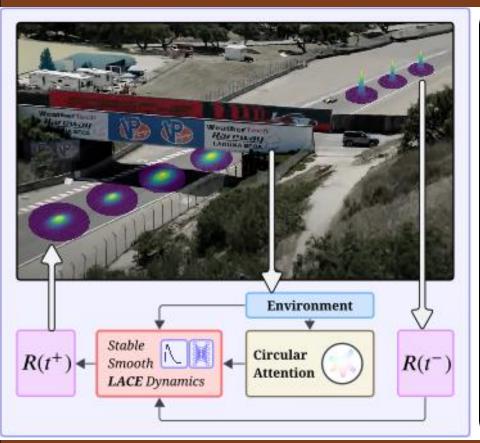


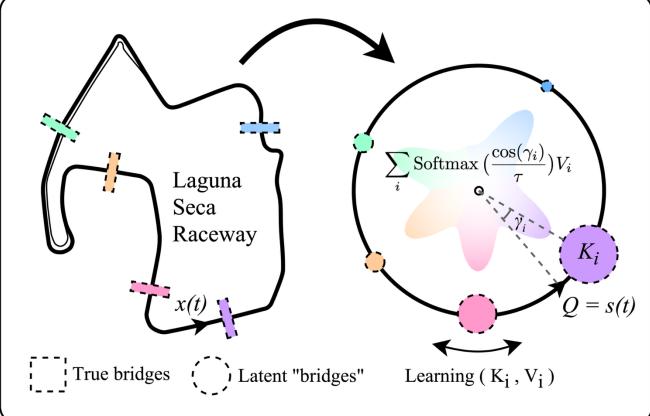
Modeling the dynamics of uncertainty



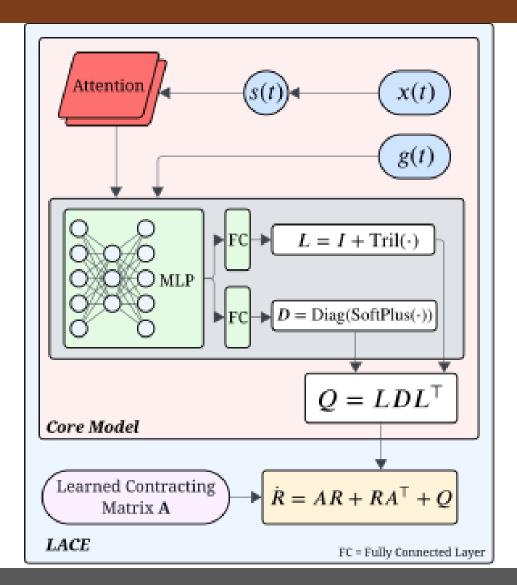


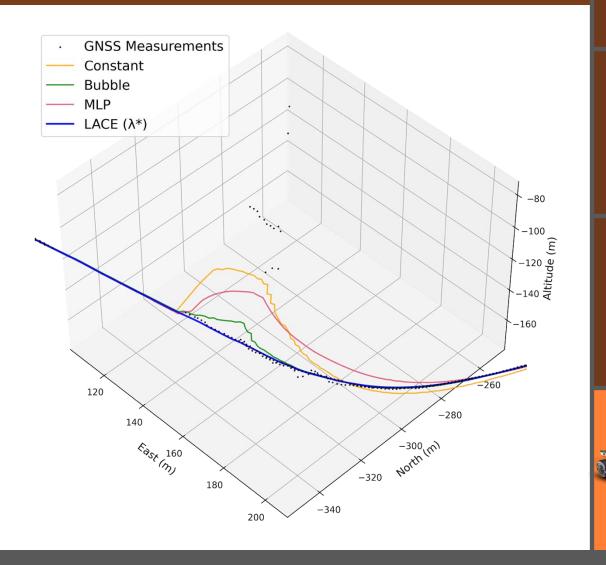
Modeling the dynamics of uncertainty



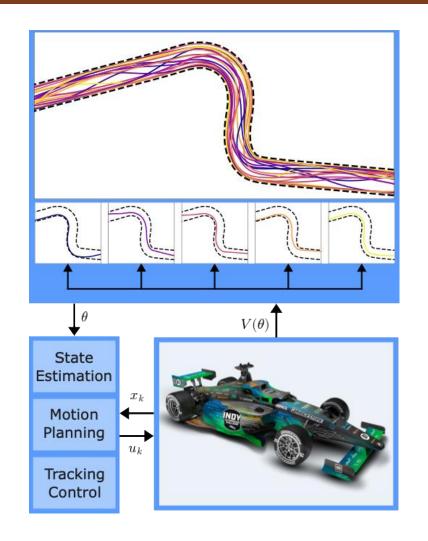


Modeling the dynamics of uncertainty





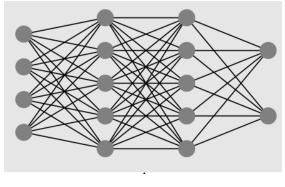
Online learning of closed-loop racelines



Engine parameters, brake bias, margin to track bounds, etc. Deep Kernel Learning Evaluate $V(\theta)$ Propose θ **Thompson Sampling** Lap time

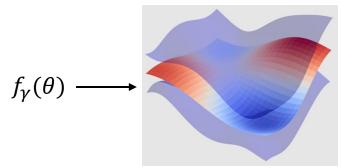
TRACK TITAN

Representation learning



γ

Deep GP with compound kernel

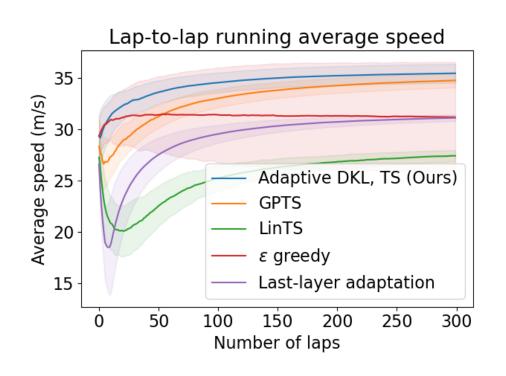


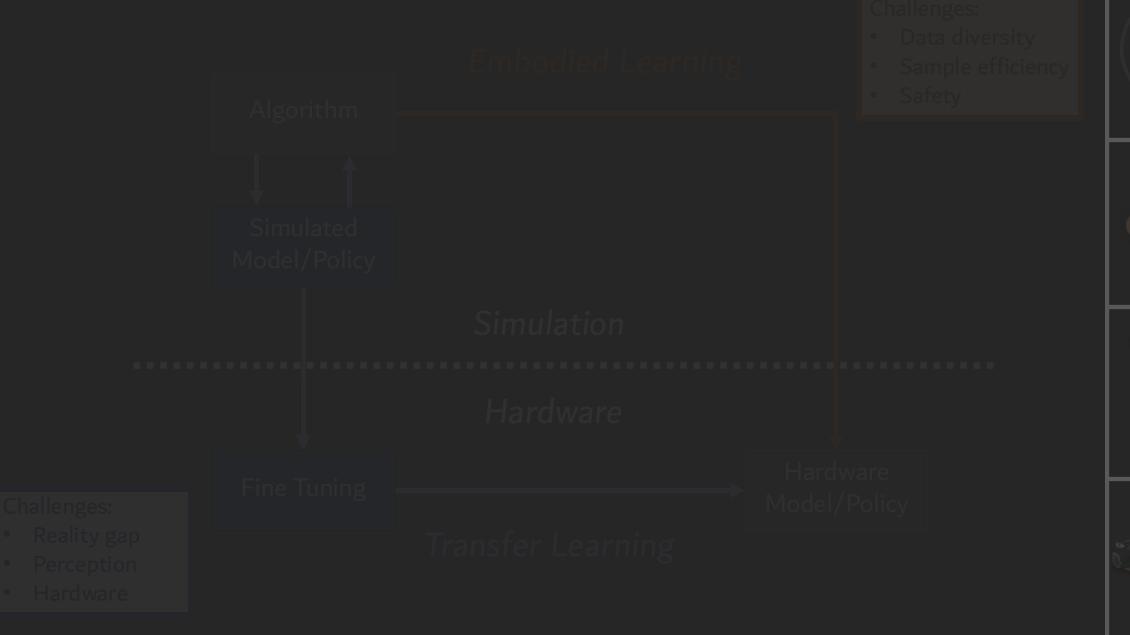
$$\hat{V}(\theta') \sim N(\mu(\theta'), k^*(f_{\gamma}(\theta), f_{\gamma}(\theta')))$$

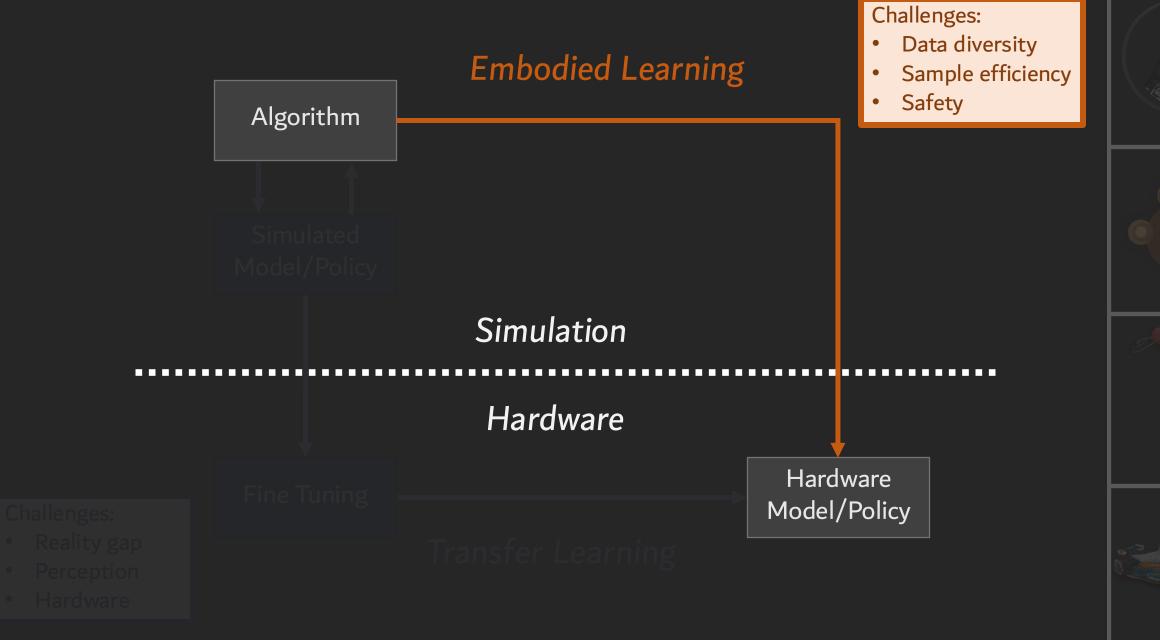
$$k^* = k(f_{\gamma}(\theta), f_{\gamma}(\theta')) + k(\theta, \theta')$$
Offline Online

Online learning of closed-loop racelines

- Our approach can leverage strong priors to learn faster.
- Representation learning is key to finding better lap times.
- Since the MPC is the ultimate determinant of safety, this work is directly transferable to hardware.







Questions?

