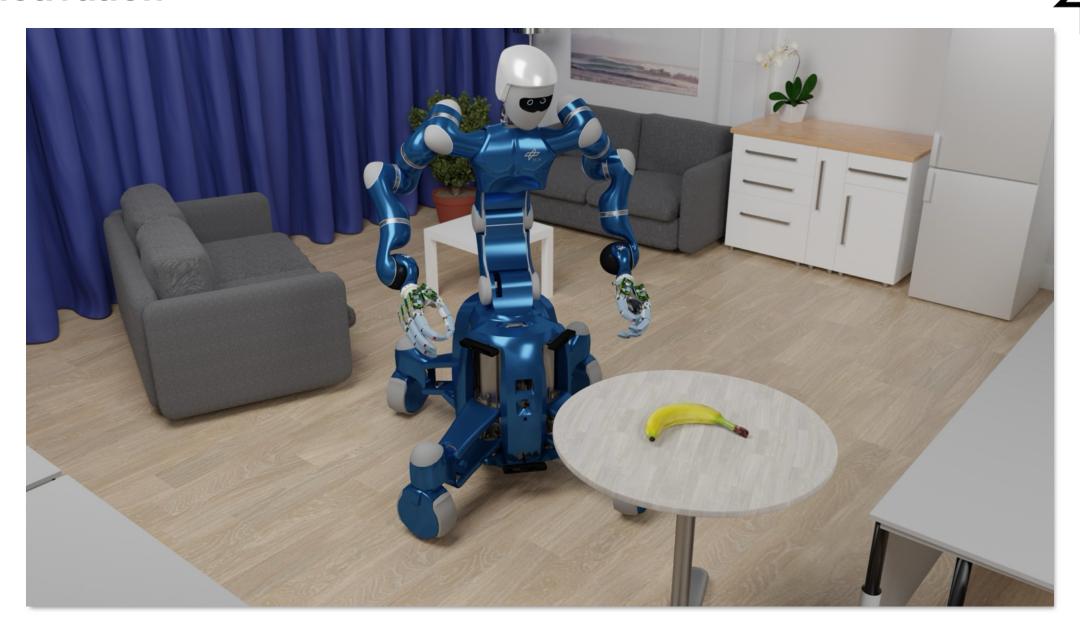
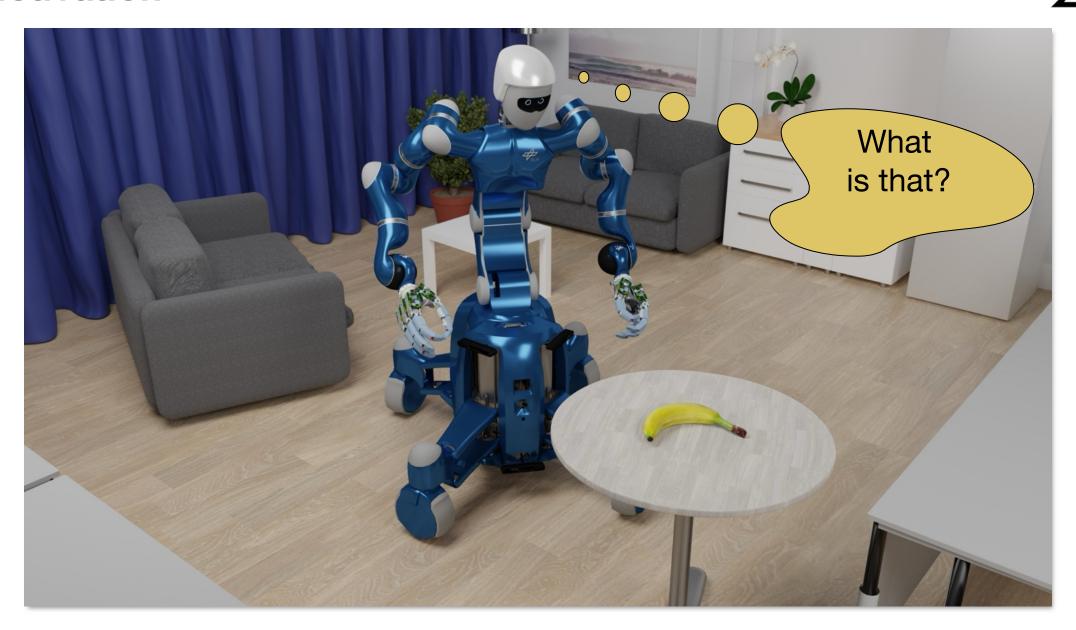
TO KNOW OR TO SEE: FEW- AND ZERO-SHOT OBJECT PERCEPTION FOR ROBOTIC MANIPULATION

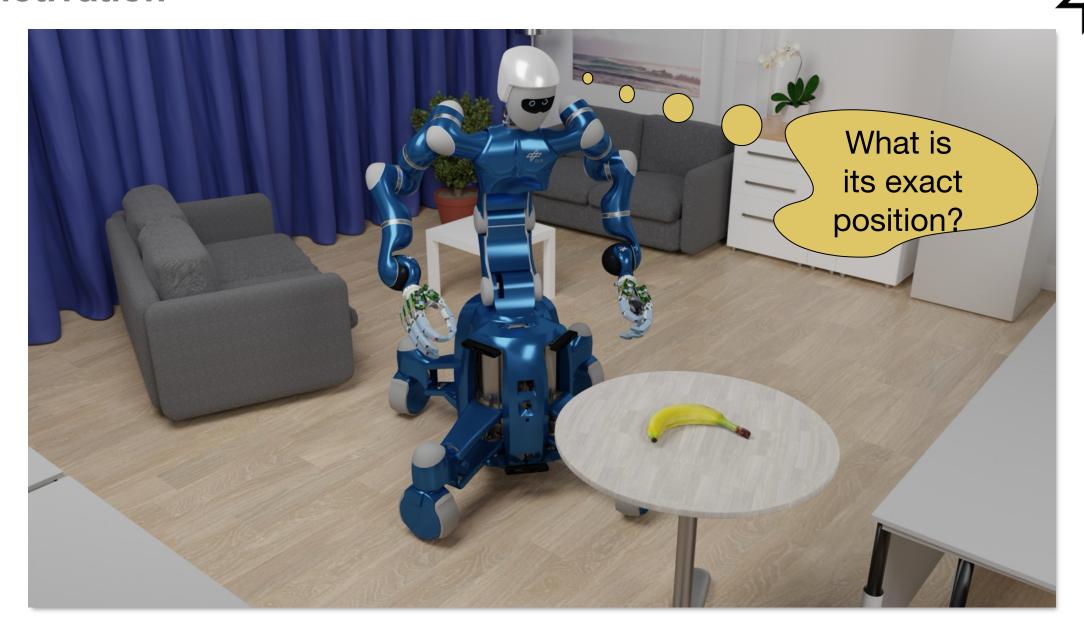
Prof. Dr. Rudolph Triebel

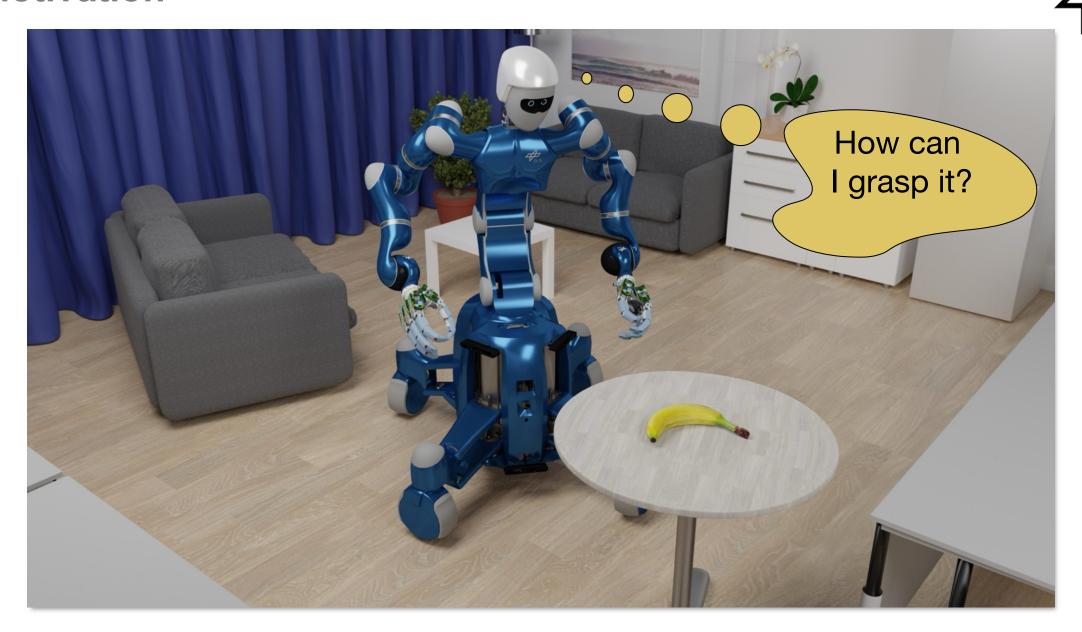
Department Perception and Cognition, Inst. for Robotics and Mechatronics (DLR)

Chair of Intelligent Robot Perception at Karlsruhe Institute of Technology (KIT)









3 main perception tasks for manipulation:

Object detection

- often involves segmentation
- adds semantic information
- requires the appearance (color, texture) of objects

3 main perception tasks for manipulation:

Object detection

Object pose estimation

- retrieves the exact position and orientation in the camera (robot) frame
- requires the exact geometry of objects

Frame-by-frame

Tracking

Sundermeyer, Marton, Durner, Brucker, Triebel: "Implicit 3D Orientation Learning for 6D Object Detection from RGB Images", European Conf. on Computer Vision (ECCV) 2018

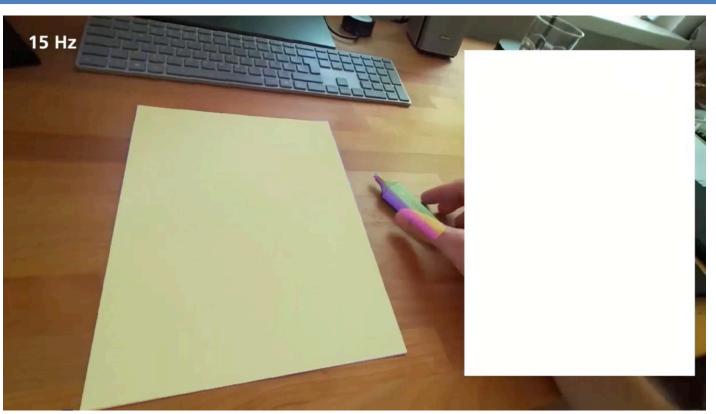
Stoiber, Pfanne, Strobl, Triebel, Albu-Schäffer, "A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking", Asian Conference on Computer Vision (ACCV) 2020

3 main perception tasks

Object detection

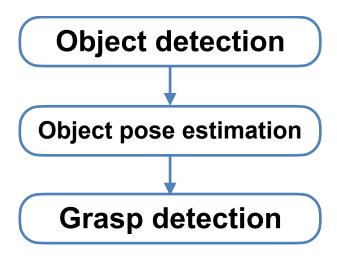
Object pose estimation

- retrieves the exact position and orientation in the camera (robot) frame
- requires the exact geometry of objects

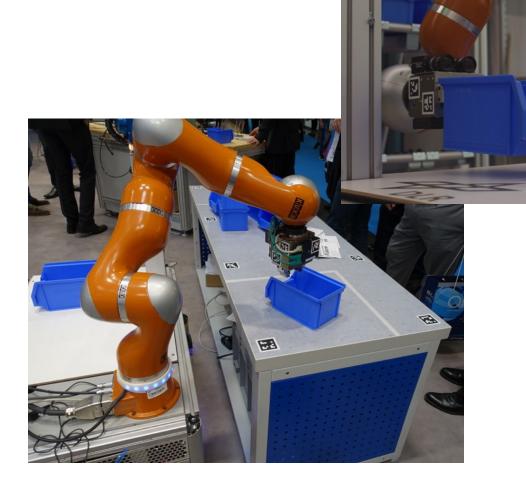


Stoiber, Elsayed, Reichert, Steidle, Lee, Triebel, "Fusing Visual Appearance and Geometry for Multi-Modal 6DoF Object Tracking", IROS 2023

3 main perception tasks for manipulation:

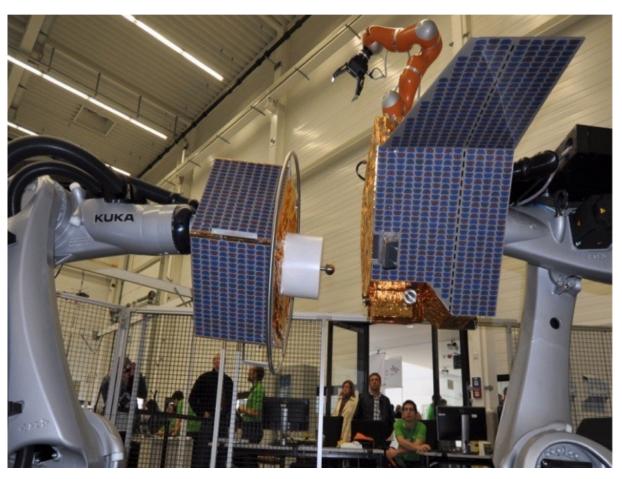


- finds the pose of the robotic gripper for a grasp
- requires the exact geometry and kinematics of the gripper

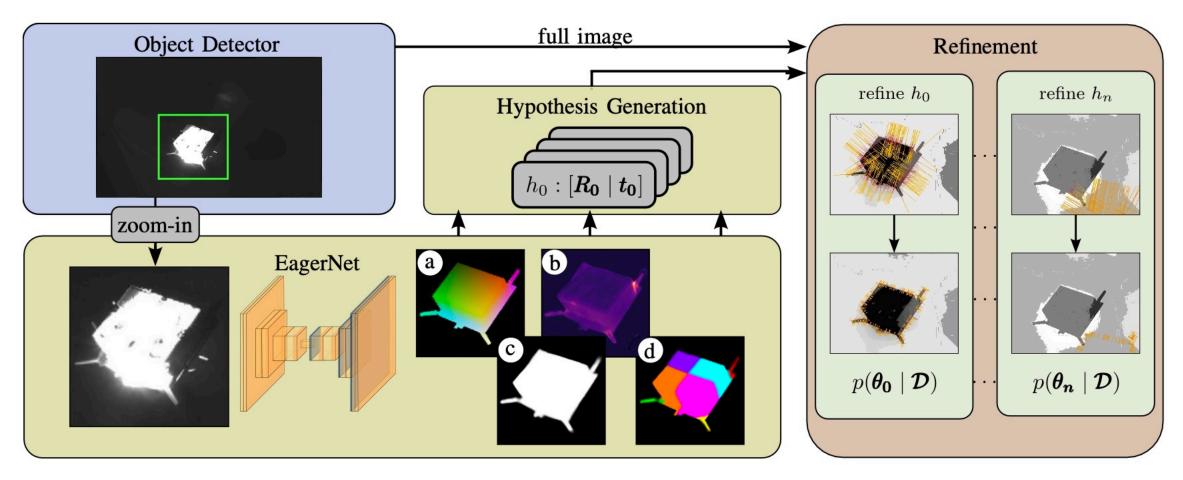


Example: Satellite Pose Estimation for On-Orbit Servicing

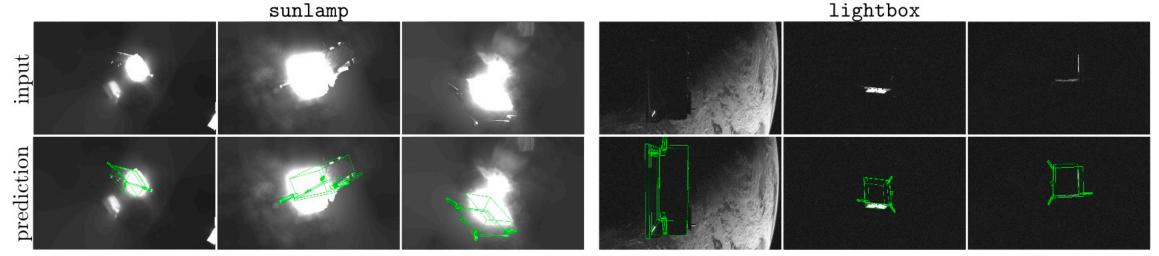
- Aim: find the relative 6DoF pose between servicer and target
- Challenges:
 - very difficult lighting conditions
 - inaccurate 3D models
 - insufficient training data



Example: Satellite Pose Estimation for On-Orbit Servicing



Example: Satellite Pose Estimation for On-Orbit Servicing



Qualitative Results on SPEED+ benchmark data set

- State-of-the-art performance on SPEED+ data set (post-mortem)
- In category lightbox, EagerNet is best in all categories
- In sunlamp, best in rotation error
- 3D model not necessarily perfect

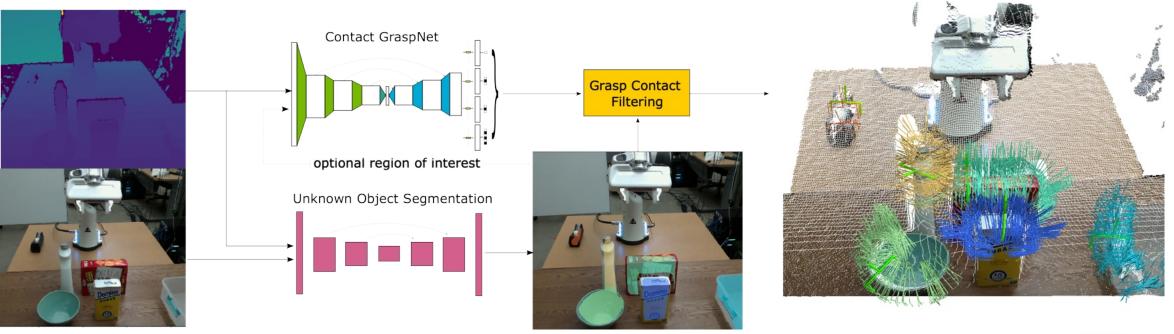
	lightbox		sunlamp				
	e_t	e_R	$e_{ m pose}$	e_t	e_R	e_{pose}	μ
lava1302 [6]	0.0464	0.1163	0.1627	0.0069	0.0476	0.0545	0.1086
prow	0.0196	0.0944	0.1140	0.0133	0.0840	0.0972	0.1056
VPU [5]	0.0215	0.0799	0.1014	0.0118	0.0493	0.0612	0.0813
TangoUnchained	0.0161	0.0519	0.0679	0.0150	0.0750	0.0900	0.0790
haoranhuang_njust	0.0138	0.0515	0.0652	0.0110	0.0479	0.0589	0.0621
EagerNet (ours)	0.0085	0.0305	0.0390	0.0126	0.0465	0.0590	0.0490

Ulmer, Durner, Sundermeyer, Stoiber, Triebel, "6D Object Pose Estimation from Approximate 3D Models for Orbital Robotics", IROS 2023

What is Known and What is Seen

- Known vs. unknown objects:
 - Objects contained in training data?
- Seen vs. unseen objects:
 - CAD Model of object given during inference?
- Zero-shot vs. few-shot
 - How many samples are required for (re-)training?
- Model-based vs. model-free
 - CAD model given beforehand?

Example: Learning to Grasp Unknown Objects

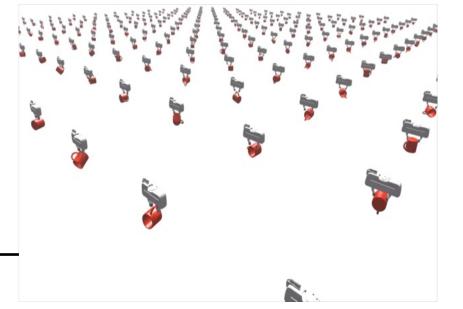


Main ideas:

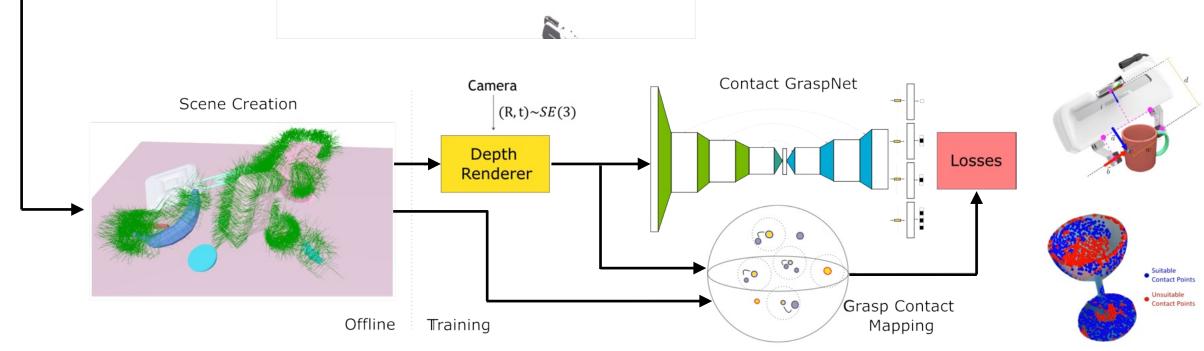
- Use a representation of grasp contact points for 2-finger robotic grippers
- Train a network to predict feasible contact points from a large simulated training data set
- Combine this with unknown-object segmentation to mask out objects



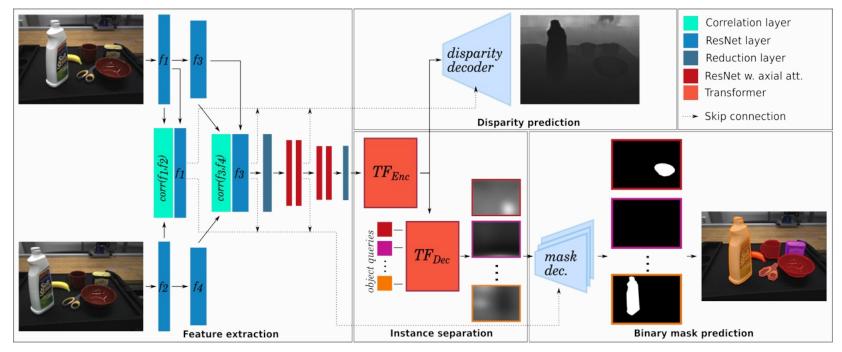
Example: Learning to Grasp Unknown Objects



- generate 17.7 m grasps from physics simulation (ACRONYM)
- generate synthetic scenes with objects and stable grasps
- learn a model that maps grasps to contact points



Example: Learning to Grasp Unknown Objects



Learning to segment unknown objects from stereo images using INSTR

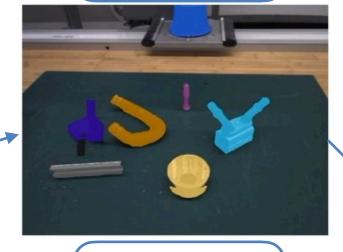
- ContactGraspNet operates on entire scenes, not objects
- To manipulate objects, we need to segment them
 - → INSTR for stereo-based object segmentation
- Then, segments are overlaid with the detected grasps

Grasping Unknown Objects in the Wild

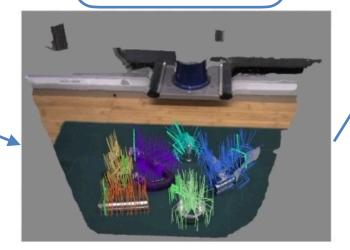
Durner, Boerdijk, Sundermeyer, Friedl, Marton, Triebel: "Unknown Object Segmentation from Stereo Images", IEEE Intern. Conference on Intelligent Robots and Systems (IROS), 2021

Grasping Unknown Objects of Difficult Shapes

Segmentation



Grasp detection

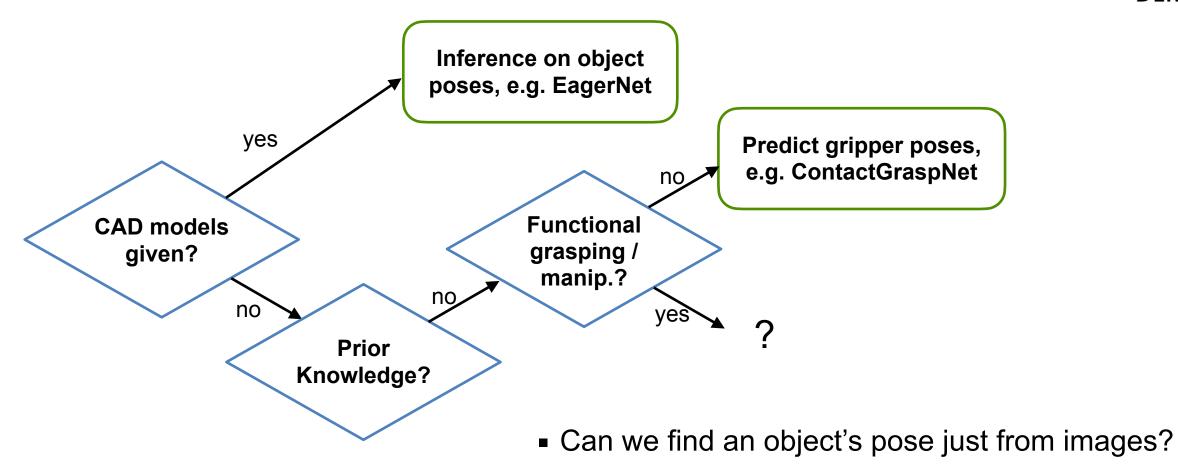


Grasp execution

Sundermeyer, Mousavian, Triebel, Fox: "Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes", Intern. Conf. on Robotics and Automation (ICRA) 2021

Image + Point cloud

Perception Based on Known or Unseen Objects



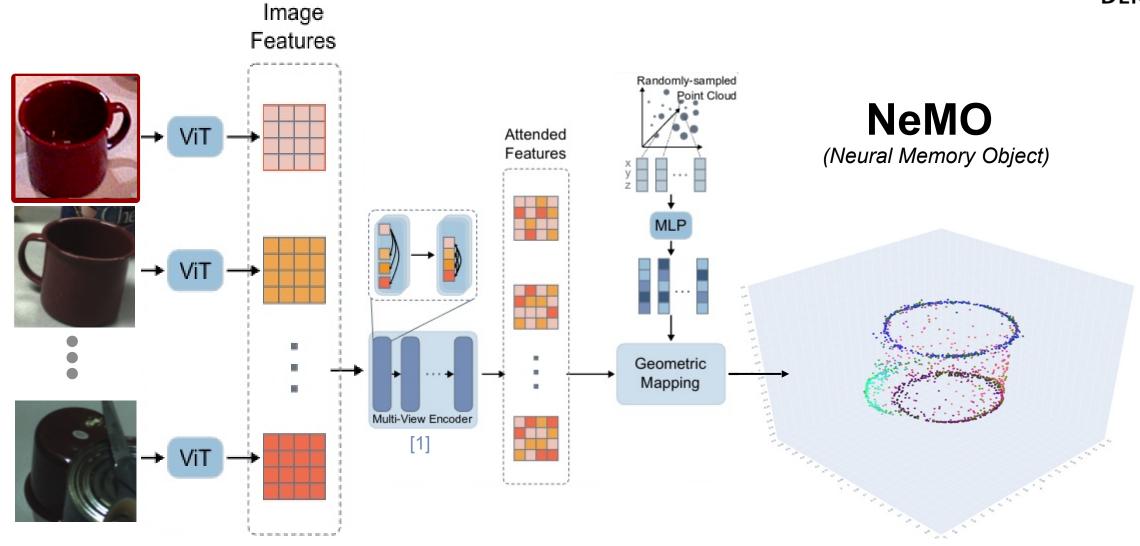
Can we do this for new objects without retraining?

Model-free Object Perception

- Detection
- Segmentation
- 6DoF Pose Estimation
- novel view synthesis
- ...

- Template images
- Collect a set of template images
- Generate an object representation
- Perform inference based on a query image
- → No CAD Model needed
- → Train a single network once, separate object information from network weights
- → No retraining / finetuning

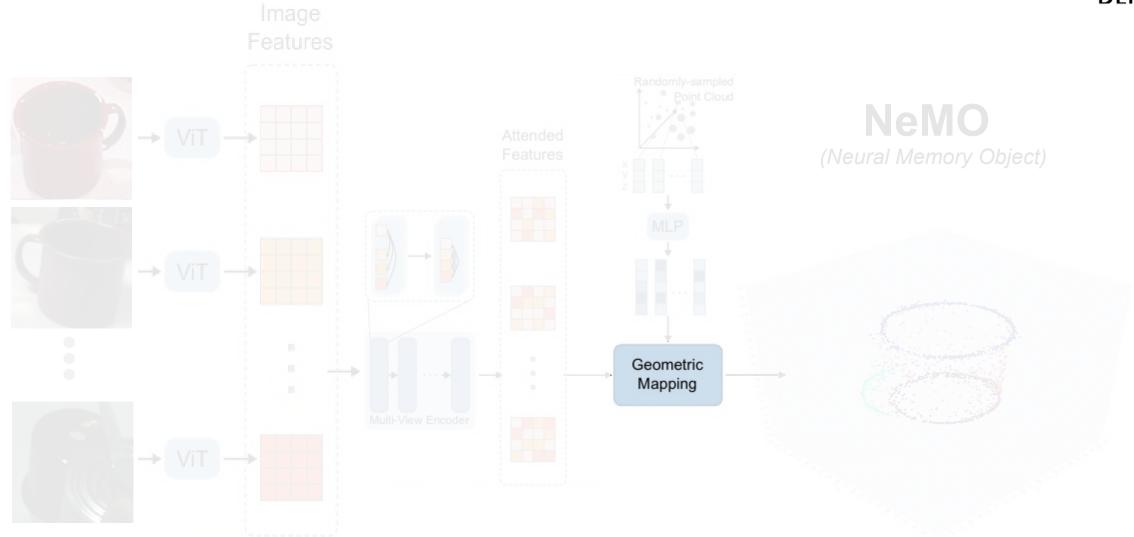
Encoder



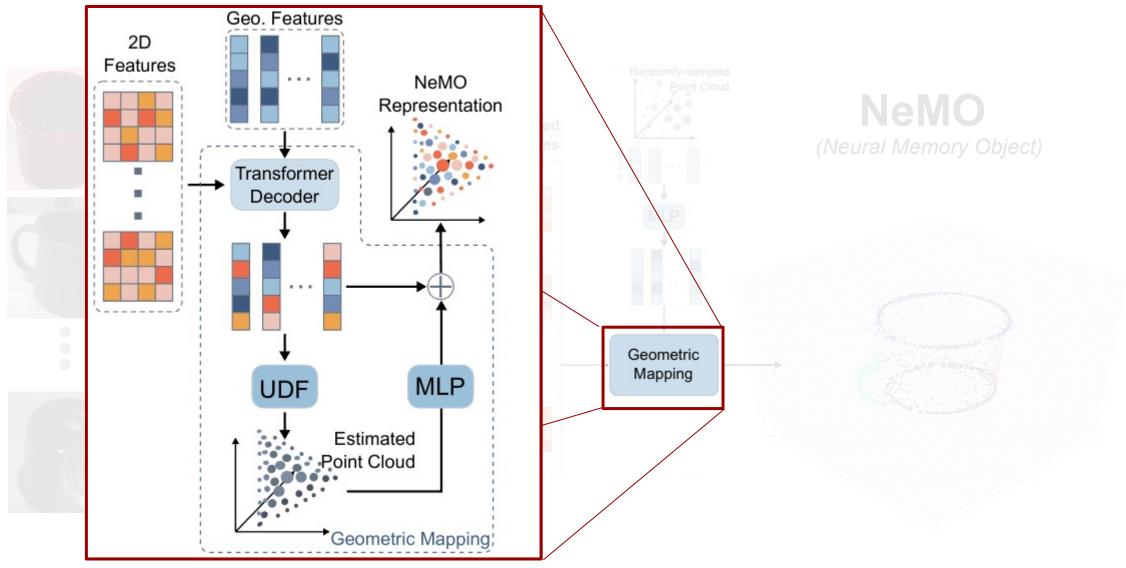
[1] Jiang, Jiang, Zhao, Huang, "LEAP: Liberate Sparse-View 3D Modeling from Camera Poses", in Intern. Conf. on Representation Learning (ICLR), 2024

Jung, Klüpfel, Triebel, Durner: "Representation of Template Views for Few-Shot Perception", *International Conference on 3D Vision* (3DV) 2026 (to appear)

Encoder

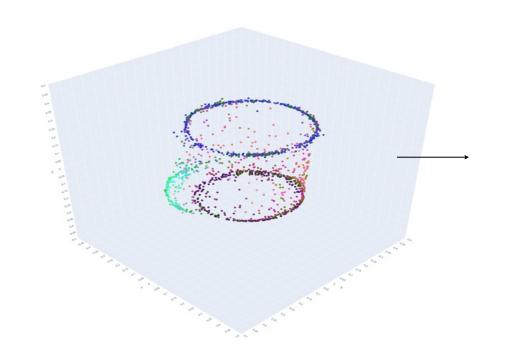


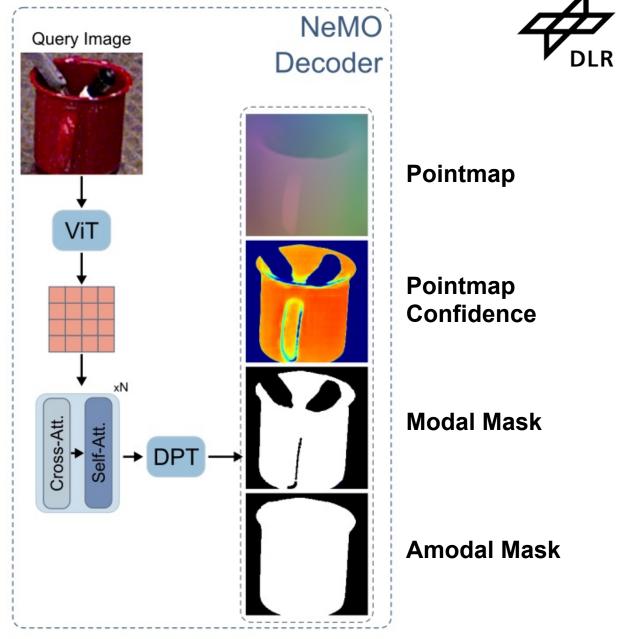
Encoder



Jung, Klüpfel, Triebel, Durner: "Representation of Template Views for Few-Shot Perception", *International Conference on 3D Vision* (3DV) 2026 (to appear)

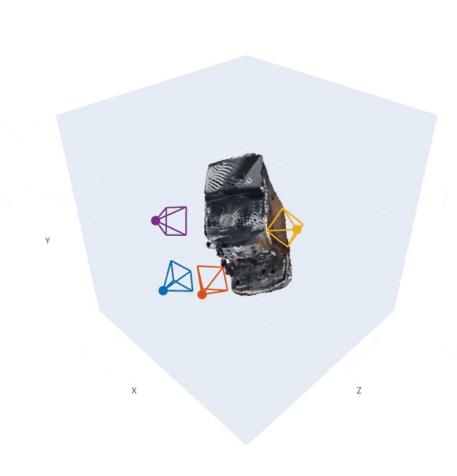
Decoder

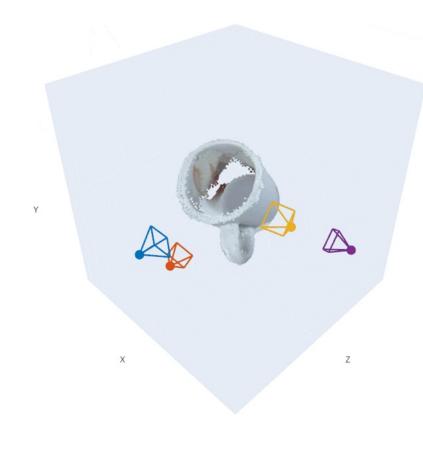




Jung, Klüpfel, Triebel, Durner: "Representation of Template Views for Few-Shot Perception", *International Conference on 3D Vision* (3DV) 2026 (to appear)

Qualitative Examples





Jung, Klüpfel, Triebel, Durner: "Representation of Template Views for Few-Shot Perception", *International Conference on 3D Vision* (3DV) 2026 (to appear)

Results: Model-Free Detection and Pose Estimation

Method	HOPEv2	HANDAL
CNOS (SAM) - Static onboarding [41]	0.345	_
dounseen-SAM-CTL [16]	0.380	_
GFreeDet-FastSAM [33]	0.364	0.255
GFreeDet-SAM [33]	0.384	0.264
Ours	0.411	0.273

Method	Detections	HOPEv2	HANDAL
OPFormer [†]	CNOS [41]	0.335	0.204
Ours	CNOS [41]	0.307	_
Ours	GFreeDet-FastSAM [33]	0.329	0.213
Ours	NeMO	0.302	0.235

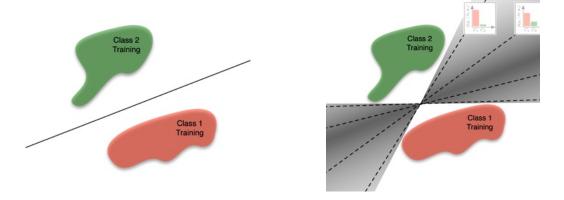
Detection results

Pose estimation results

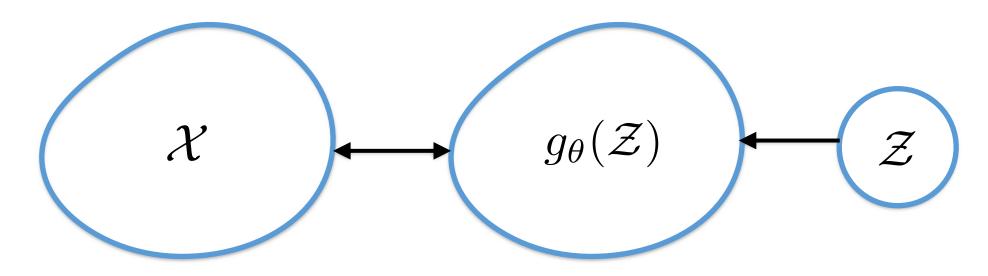
Qualitative results

Discriminative vs Generative Models

- Discriminative models learn to distinguish known classes
- They have some difficulties detecting OOD data



- ullet Generative models learn a function g that maps from a latent space $\mathcal Z$ to the data space $\mathcal X$
- ullet They can generate samples from the latent space ${\mathcal Z}$ and apply g



Generative Models: Advantages and Challenges

Advantages

- good test of representing highdimensional data
- useful for reinforcement learning
- can be trained with missing data,
 e.g. semi-supervised learning
- work with **multi-modal output**, e.g. predicting the next frame in a video

Challenges

- need good hyper parameters during training (architecture, training objective, regularisation, ...)
- need a similarity between generated and observed data, e.g.:
 - invert generator
 - learn similarity (e.g. discriminator)
- how to find a good dimensionality of the latent space?

Recent Generative Models

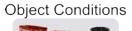
- Generative Adversarial Networks (GANs)
- Variational Autoencoders
- Generative Pretrained Transformers (GPT)
- Autoregressive Models
- Normalising Flow
- Diffusion models
- VLMs, VLAs
- **.**...

Diffusion-based Zero-Shot Instance Segmentation

Object Conditions

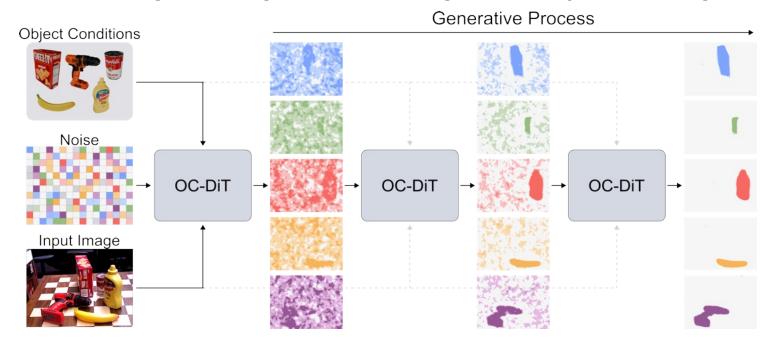
Diffusion-based Zero-Shot Instance Segmentation

- Idea: Sequentially generate instance segmentations with diffusion
- Guide sampling by conditioning the reverse process on target objects

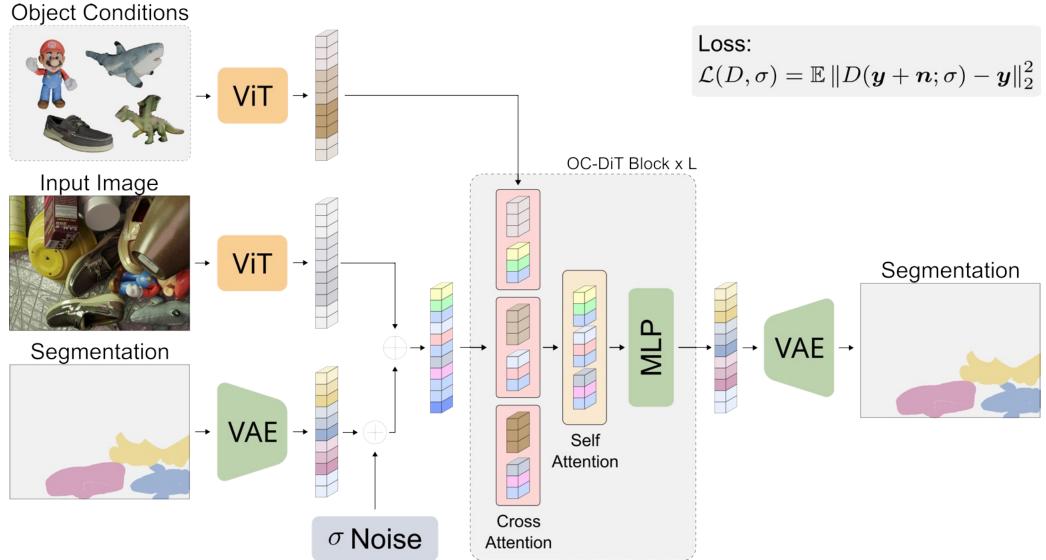


Diffusion-based Zero-Shot Instance Segmentation

- Idea: Sequentially generate instance segmentations with diffusion
- Guide sampling by conditioning the reverse process on target objects
- Latent Diffusion: Use VAE to shape latent space statistics
- Why Diffusion? Strong scaling, effective against object ambiguities



Conditional Latent Diffusion: Architecture



Results: Model-based 2D Segmentation of Unseen Objects

- Evaluation on BOP benchmark data set on model-based 2D segmentation
- At test time RGB images are received of objects that are not in training data
- We did not fine-tune on target data
- Conditioned on GTH objects
- AP metric: mean of precision values at Intersection over Union (IoU) thresholds ranging from 50% to 95% with a step size of 5%
- Strong results on VXBV, TUDL, HB
- The refined model uses bounding boxes from coarse and is trained with samples that contain false positives

Average	Precision

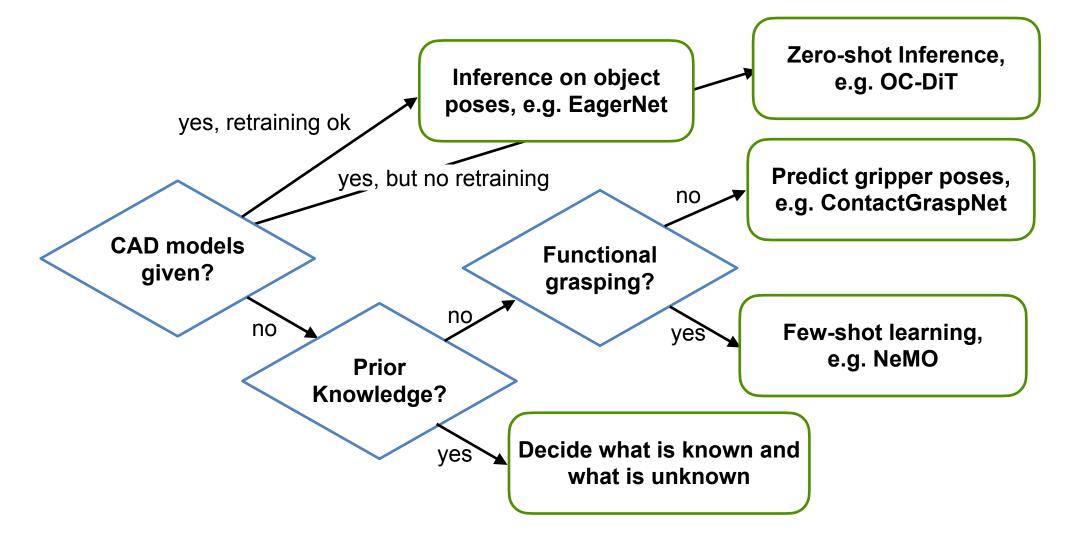
AP	YCBV	TUDL	LMO	НВ
CNOS [29]	59.9	48.0	39.7	51.1
SAM6D [24]	60.5	56.9	46.0	59.3
NIDS [27]	65.0	55.6	43.9	62.0
MUSE	67.2	56.5	47.8	59.7
LDSeg	64.7	58.7	47.8	62.2
Ours coarse	68.6	32.5	29.6	52.4
Ours refined	71.7	59.4	40.1	61.5

Qualitative Results



Ulmer, Boerdijk, Triebel, Durner: "Conditional Latent Diffusion Models for Zero-Shot Instance Segmentation", *International Conference on Computer Vision* (ICCV) 2025

Perception Based on Known or Unseen Objects

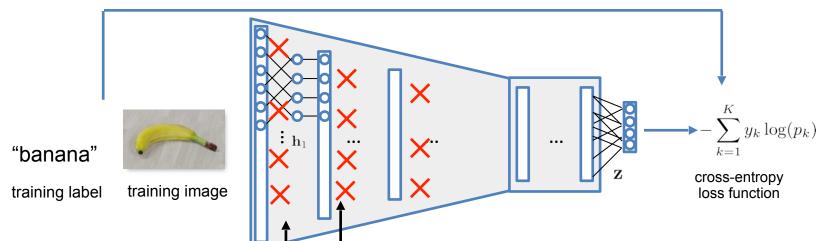


Olov Anderson, Justus Piater: "Something unexpected always happens"

Epistemic Uncertainty from a Neural Network

Several techniques exist:

- predictive entropy
- MC-dropout in inference



weights W_1

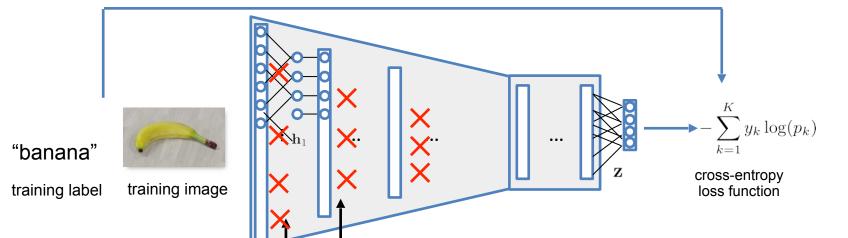
Idea:

Run several forward passes with differently "dropped out" weights

The Epistemic Uncertainty from a Neural Network

Several techniques exist:

- predictive entropy
- MC-dropout in inference



weights W_1

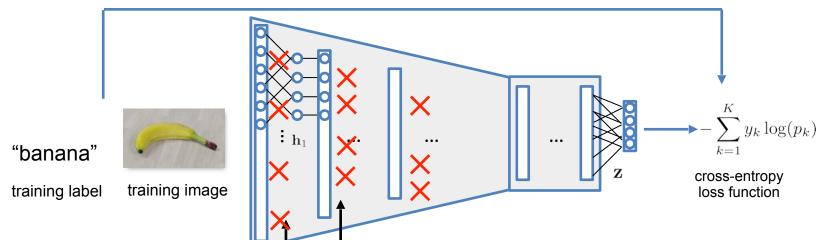
Idea:

Run several forward passes with differently "dropped out" weights

Epistemic Uncertainty from a Neural Network

Several techniques exist:

- predictive entropy
- MC-dropout in inference



weights W_1

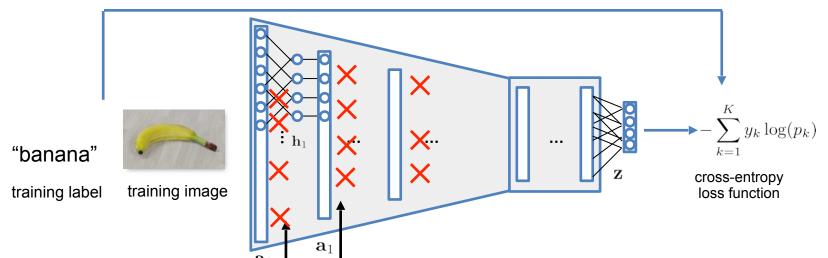
Idea:

Run several forward passes with differently "dropped out" weights

Epistemic Uncertainty from a Neural Network

Several techniques exist:

- predictive entropy
- MC-dropout in inference



Idea:

Run several forward passes with differently "dropped out" weights

Use statistics (mean, variance) over these samples to estimate pred. dist.

weights W_1

Problem: Tends to be overconfident

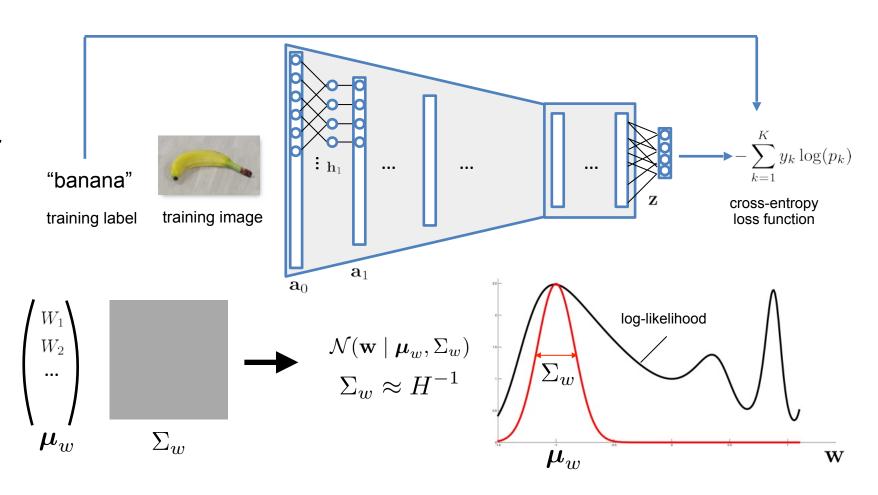
Bayesian Neural Networks

Main idea:

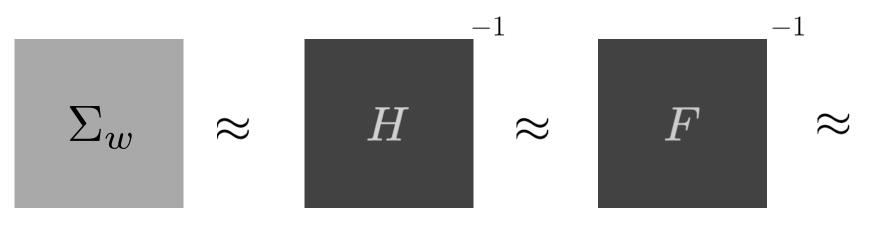
- use Laplace-Approximation to define a posterior
- run Monte-Carlo integration for inference

Problem:

■ Inversion of *H*



Approximating the Hessian Matrix

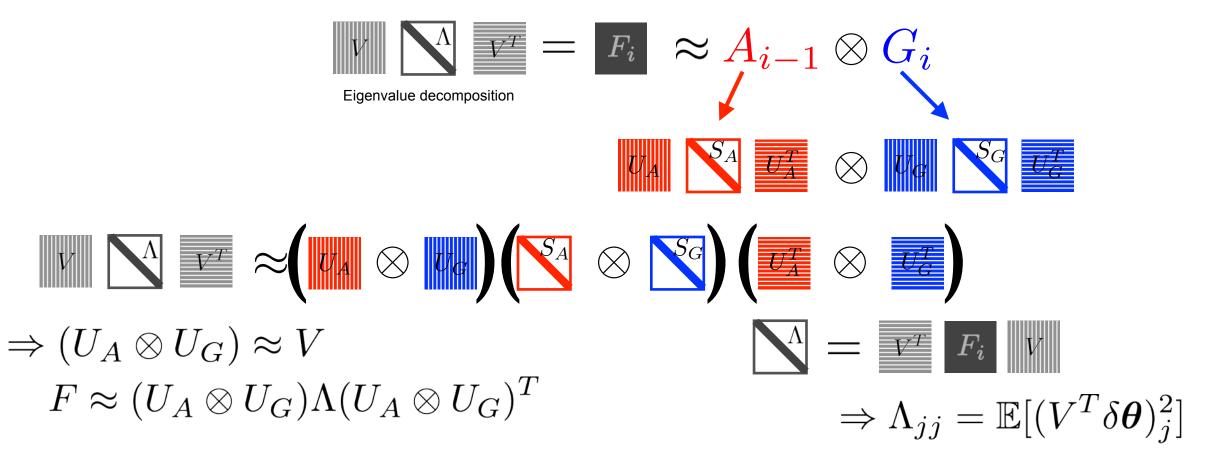


Fisher information matrix

$$F = \mathbb{E}[\delta \boldsymbol{\theta} \delta \boldsymbol{\theta}^T]$$

$$F_i$$
 = $\mathbb{E}[\blacksquare \otimes \blacksquare] \approx \mathbb{E}[\blacksquare] \otimes \mathbb{E}[\blacksquare] = A_{i-1} \otimes G_i$ "Kronecker Factorisation"

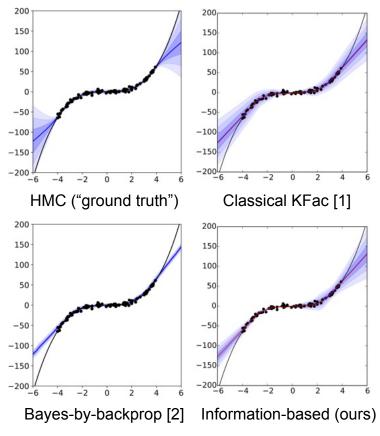
Approximating the Hessian Matrix



A further improvement can be made by setting the diagonals to the exact diagonals of F:

$$F \approx (U_A \otimes U_G)\Lambda(U_A \otimes U_G)^T + D$$

BNNs in Practice: Knowing When We Don't Know



Over- and under-confidence in a toy regression problem

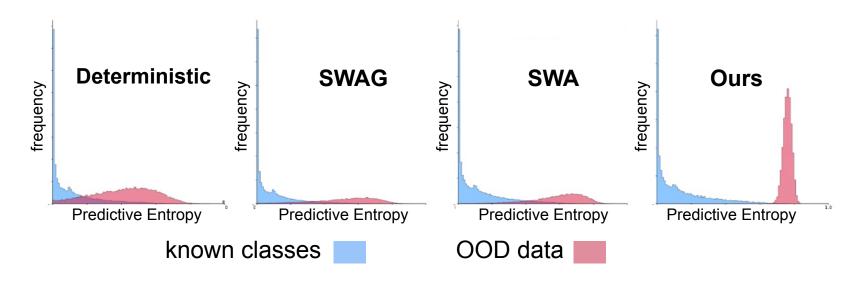
- [1] Ritter et al., ICLR 2018
- [2] Blundell et al., ICML 2015

Training Data:

- ImageNet with 1000 classes
- 14 million images

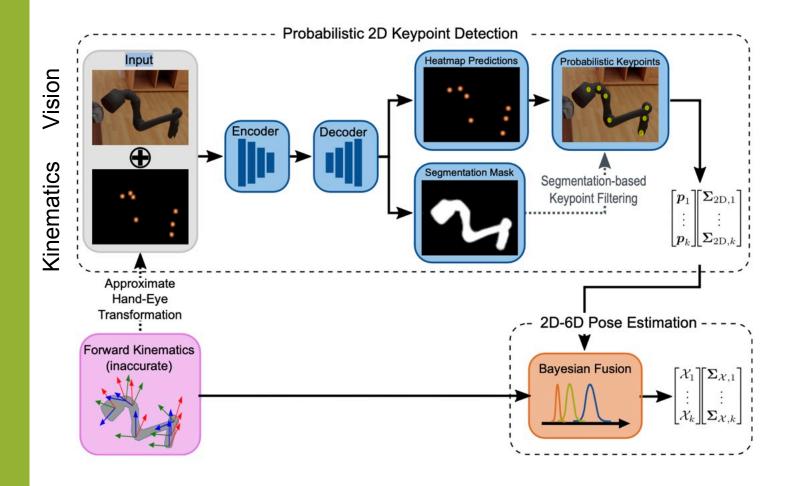
Test Data:

artistic impressions, paintings



Lee, Humt, Feng, Triebel: "Estimating Model Uncertainty of Neural Networks in Sparse Information Form", *Intern. Conf. on Machine Learning* (ICML) 2020

Example: Fusing Kinematics with Vision



- Learn a network to predict 2D key points from kinematics
- Input is an image and an erroneous set of key points (=joint locations in 2D)
- Output is a mask of the arm and corrected key points
- Uncertainty is estimated using a Bayesian NN
- Fusion of kinematics and vision using an EKF

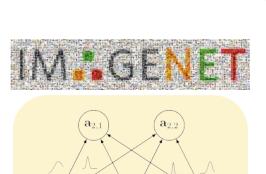
Results: Kinematics and Vision

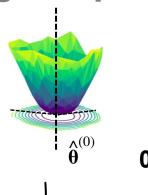
Method	Panda PCK (@px) ↑					<i>Jaco2</i> <i>PCK</i> (@px) ↑				neoDavid PCK (@px) ↑					
	1	3	5	10	50	1	3	5	10	50	1	3	5	10	50
Ours	0.068	0.491	0.793	0.944	0.992	0.020	0.189	0.428	0.786	0.98	0.009	0.117	0.277	0.428	0.727
Ours w/ o seg.	0.05	0.436	0.742	0.922	0.991	0.021	0.176	0.425	0.768	0.957	0.016	0.103	0.212	0.32	0.569
Ours w/o (PK + seg.)	0.05	0.404	0.686	0.822	0.844	0.016	0.118	0.25	0.427	0.66	0.012	0.152	0.260	0.418	0.610
DREAM w/ PK	0.057	0.398	0.679	0.871	0.969	0.012	0.087	0.244	0.569	0.828					
DREAM	0.041	0.35	0.631	0.766	0.789	0.004	0.019	0.047	0.12	0.224					

- Evaluated on three different robot arms
- Overall, Bayesian fusion of predicted kinematics and corrected vision worked best
- On the challenging neoDavid arm, the fused method outperforms others at larger levels of thresholds, for key point detection

Results on neoDavid

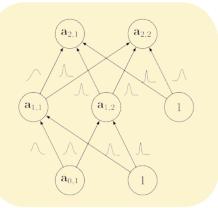
How to find a good prior?

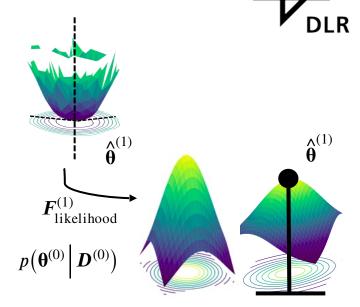




likelihood

 $p(\mathbf{\theta}^{(0)} | \mathbf{D}^{(0)})$





Maximum a posteriori estimation

$$\hat{\boldsymbol{\theta}}^{(0)} \in \arg \max p(\boldsymbol{\theta}^{(0)} \mid D^{(0)})$$

Laplace Approximation

$$p(\boldsymbol{\theta}^{(0)} \mid D^{(0)}) \approx \mathcal{N}\left(\boldsymbol{\theta}^{(0)} \mid \hat{\boldsymbol{\theta}}^{(0)}, (F^{(0)})^{-1}\right)$$

Kronecker-factorized information matrix

$$\mathbf{F}^{(0)} = \mathbf{F}^{(0)}_{\mathrm{likelihood}} + \mathbf{F}^{(0)}_{\mathrm{prior}} = \mathbf{L}^{(0)} \otimes \mathbf{R}^{(0)} + \gamma \mathbf{I}.$$

At task 1 (our robotic data of interest):

Prior learned on task 0

$$\pi(\boldsymbol{\theta}^{(1)}) = \mathcal{N}\left(\hat{\boldsymbol{\theta}}^{(0)}, (F^{(0)})^{-1}\right)$$

Posterior update on task 1

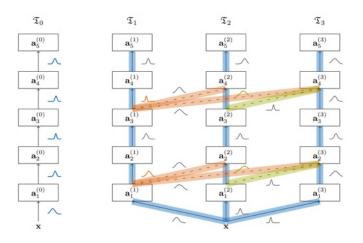
$$p(\boldsymbol{\theta}^{(1)} \mid D^{(1)}) \approx \mathcal{N}\left(\hat{\boldsymbol{\theta}}^{(1)}, (F^{(1)} + F^{(0)})^{-1}\right)$$

Kronecker-factorized information matrix

$$F^{(1)} = L^{(1)} \otimes R^{(1)} + L^{(0)} \otimes R^{(0)} + \gamma I.$$

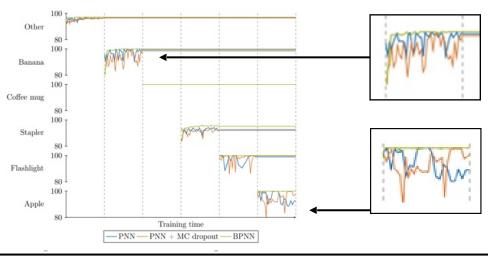
Continual learning: Bayesian Progressive Neural Networks

Extensions to continual learning



Bayesian interpretation of progressive neural networks (Rusu et al,2016).

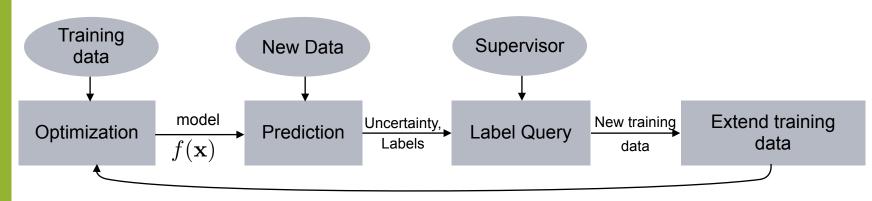
Evaluation within a robotic benchmark



	OTHER	Banana	Coffee Mug	STAPLER	FLASHLIGHT	APPLE	AVERAGE
PNN (WEIGHT DECAY 10^{-3}) PNN (WEIGHT DECAY 10^{-5}) MC DROPOUT ZERO MEAN & ISOTROPIC ISOTROPIC	95.7 ± 0.4 96.7 ± 0.3 96.3 ± 0.1 $\overline{96.3 \pm 0.3}$ $\overline{96.1 \pm 0.3}$	98.5 ± 2.3 99.0 ± 1.2 99.3 ± 0.9 95.5 ± 4.2 98.7 ± 1.0	$egin{array}{l} 100.0\pm0.0 \ 100.0\pm0.0 \ 100.0\pm0.0 \ 100.0\pm0.1 \ 100.0\pm0.0 \ \end{array}$	91.7 ± 1.0 90.7 ± 2.3 92.7 ± 0.8 91.9 ± 1.7 93.1 ± 0.6	93.8 ± 9.1 99.7 ± 0.4 99.8 ± 0.4 100.0 ± 0.1 100.0 ± 0.0	93.3 ± 4.7 94.1 ± 3.2 90.4 ± 5.1 87.7 ± 7.8 87.8 ± 6.6	95.5 ± 2.9 96.7 ± 1.2 96.4 ± 1.2 95.2 ± 2.4 96.0 ± 1.4
LEARNED	96.2 ± 0.2	98.4 ± 1.6	100.0 ± 0.0	93.9 ± 0.9	100.0 ± 0.0	95.1 ± 4.7	97.3 ± 1.2

Natural extensions to continual learning for application scenarios in robotics.

Active Learning with a Humanoid



- Epistemic uncertainty can be used to query a human supervisor in case of OOD data
- New classes can be learned using the Bayesian Progressive Neural Network approach by adding new branches
- Learning can be done comparably fast

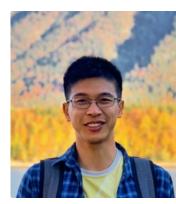
Conclusions

- Current methods in robot perception for manipulation require less geometric knowledge about the objects, but rather rely on image data
- Generative AI methods such as diffusion models are powerful tools,
 e.g. for semantic segmentation, although still costly
- Bayesian Neural Networks are useful to get epistemic uncertainty.
- This can be used for fusion with kinematics or for active learning.

Thank you!

Anne Reichert

Maximilian Durner



Jianxiang Feng

Matthias Humt

Sebastian Jung

Leonard Klüpfel

Jongseok Lee

Martin Sundermeyer

Manuel Stoiber

Maximilian Ulmer

Lukas Burkhard