

The Role of Interaction in Robot Learning

Dongheui Lee TU Wien, DLR

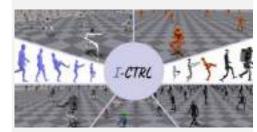
Why Imitation Learning from Humans?

Democratizing Robot Programming

Expressive Robot Motions

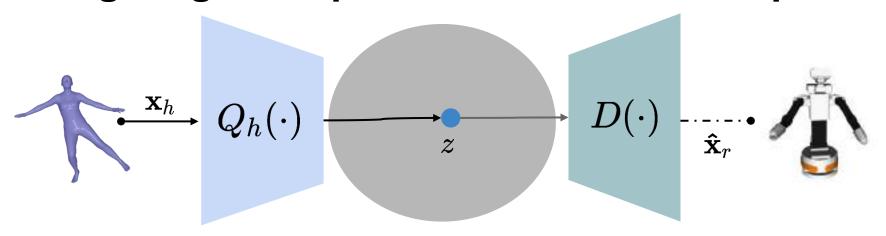
To Any Robots

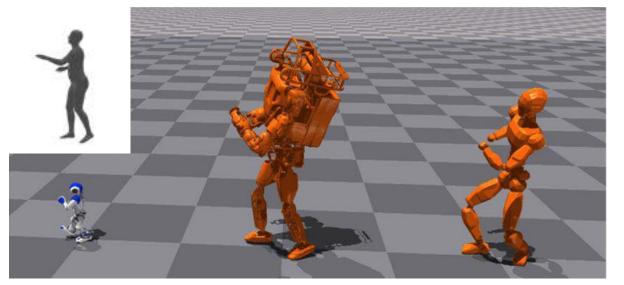
Fast Efficient Skill Learning



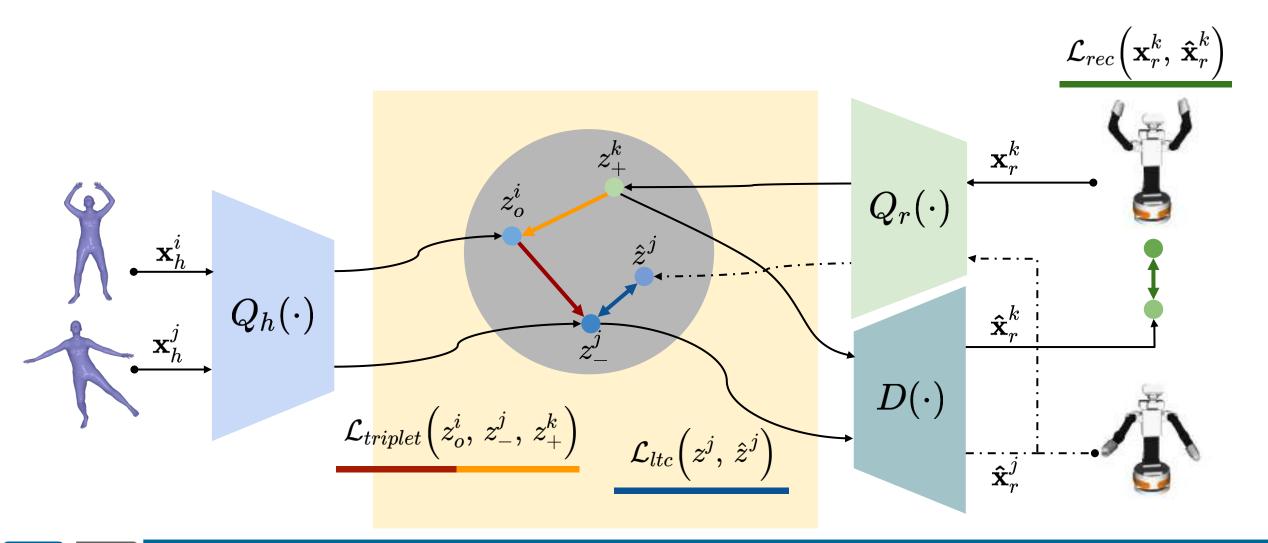
Natural Human-Robot Interaction

ImitationNet is an unsupervised DL method for human-torobot retargeting via expressive shared latent space.

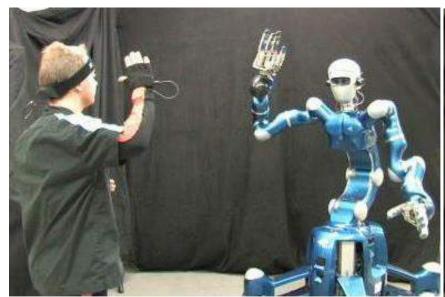




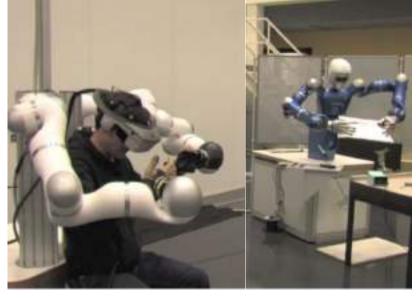
Shared latent space is built in unsupervised manner.



Imitation Learning from Humans







Motion Imitation

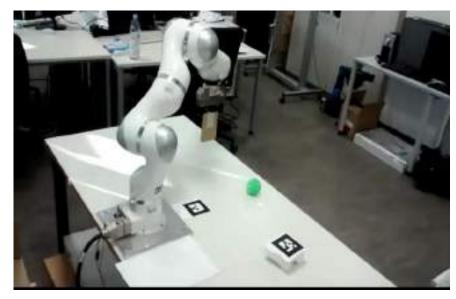
[Humanoids 2008, SYROCO2012, AT 2012, ICRA11, ICRA2014, etc]

Kinesthetic teaching

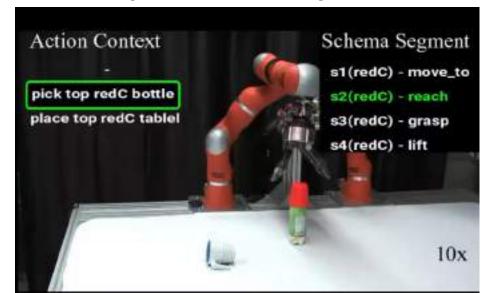
[Autonomous Robots 2011, IROS 2010, ICRA 2015, etc]

Teleoperation

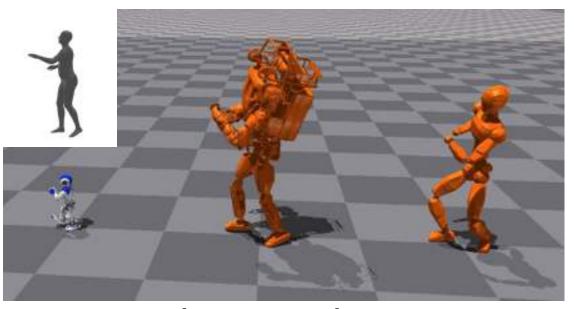
[IROS 2011, WHC 2017, AURO2019, ICRA 2020, RAL 2021, TRO 2022, RAL 2023, RAL 2024, etc]



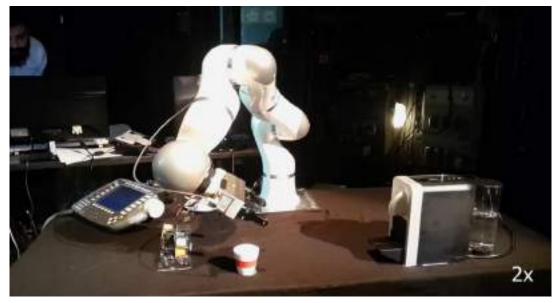
[Pervez and Lee, 2018]



[Agostini+, RAL, 2020]

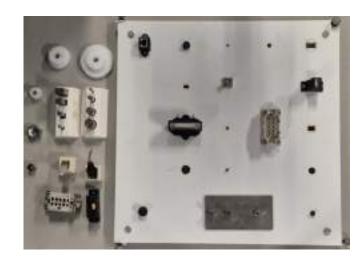


[Yan+, 2023, 2025]



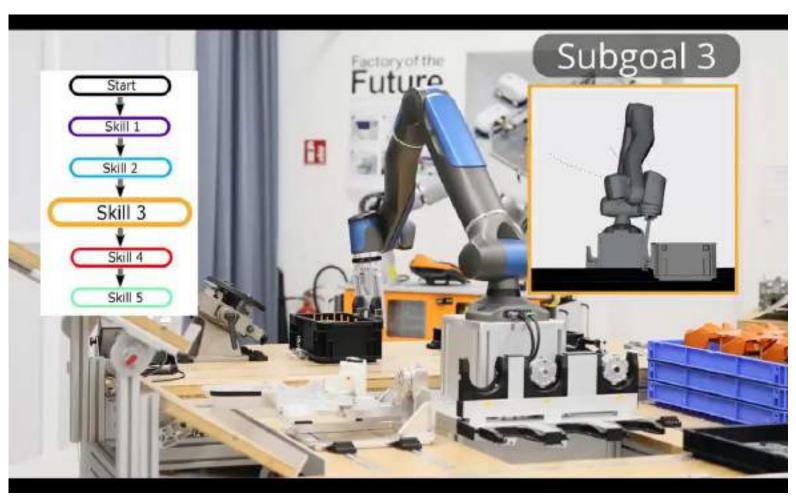
Bayerischer Rundfunk Zuendfunk Netzkongress, 2016

Embodied Intelligence: Contact-rich Manipulation



[Sliwowski+, REASSEMBLE, RSS 2025]

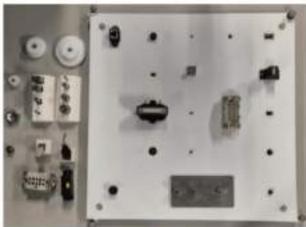
[Xue, RSS 2025]



[Willibald & Lee, IJRR 2025]

REASSEMBLE Dataset RSS 2025

NIST Task Board #1



REASSEMBLE

Robotic assEmbly disASSEMBLy datasEt

4551 Contact-rich Task Demonstration

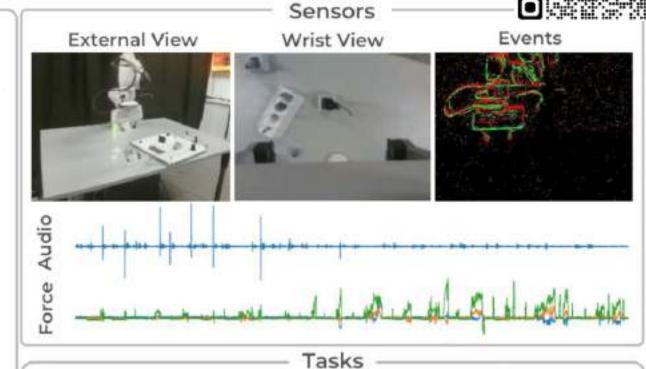
- 4035 Successful
- 516 Failed

Multimodal data

- Event camera
- Force & Torque Sensor
- 3 RGB cameras
- 3 Microphones
- Robot Proprioception

Multiple Task annotations

- Motion Policy Learning
- Temporal Action Segmentation
- Success / Anomaly Detection



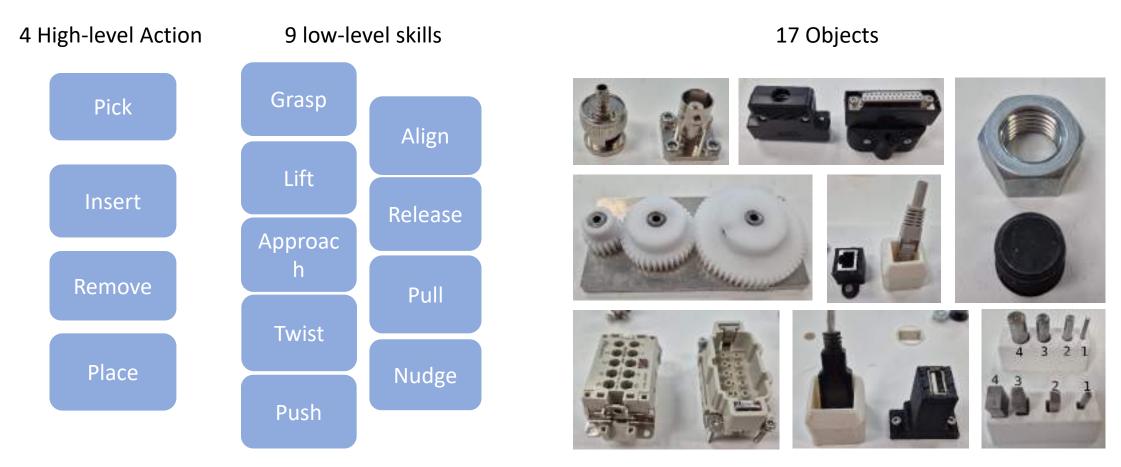
Temporal Action Segmentation

- Idle
- 2. Pick Ethernet
- Insert Ethernet
- 4. Idle

Motion Policy

Success/Anomaly Detection

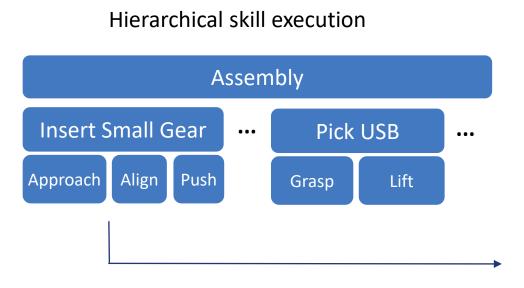
REASSEMBLE Dataset



121 Unique skill-object instances

10

REASSEMBLE



Imitation learning process is often designed as

passive, unidirectional, batch learning

Are we leveraging potential benefits of HRI in robot learning?

Part I

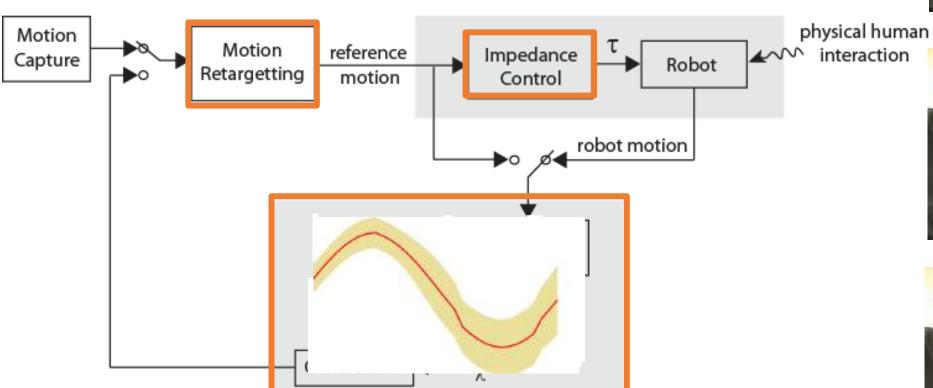
Interactive Robot Learning

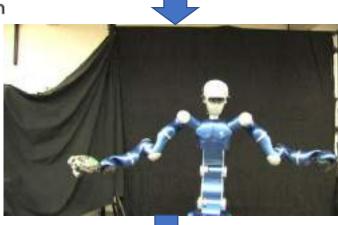
Teaching Pulp Fiction Twist Dance

The **demonstrator's intent** was not clearly conveyed to the robot.

Refine by kinesthetic teaching

$$\tau = g(q) + M(q)\ddot{q}_d + C(q,\dot{q})\dot{q}_d - D\dot{\tilde{q}} - s(\tilde{q})$$





Interactive incremental learning with heterogeneous teaching modalities could communicate the demonstrator's intent better.

Current Biology

Report

Longitudinal evidence that infants develop their imitation abilities by being imitated

Samuel Essler, 1,2,5,* Tamara Becher, 1 Carolina Pletti, 1,3 Burkhard Gniewosz, 4 and Markus Paulus 1

¹Ludwig-Maximilians-Universität München, Leopoldstr. 13, 80802 Munich, Germany

²FOM University of Applied Sciences, Leimkugelstraße 6, 45141 Essen, Germany

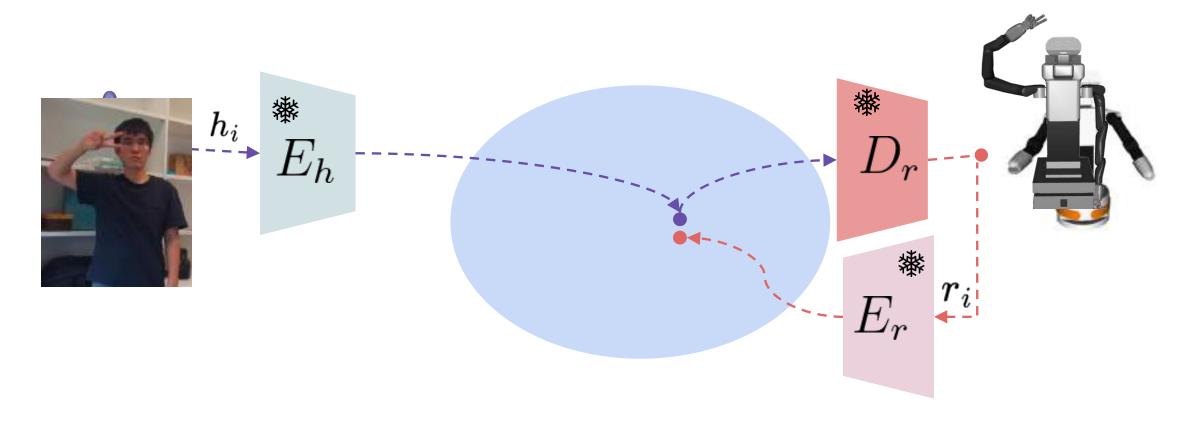
³University of Vienna, Universitätsring 1, 1010 Vienna, Austria

⁴Paris-Lodron-University, Kapitelgasse 4/6, 5020 Salzburg, Austria

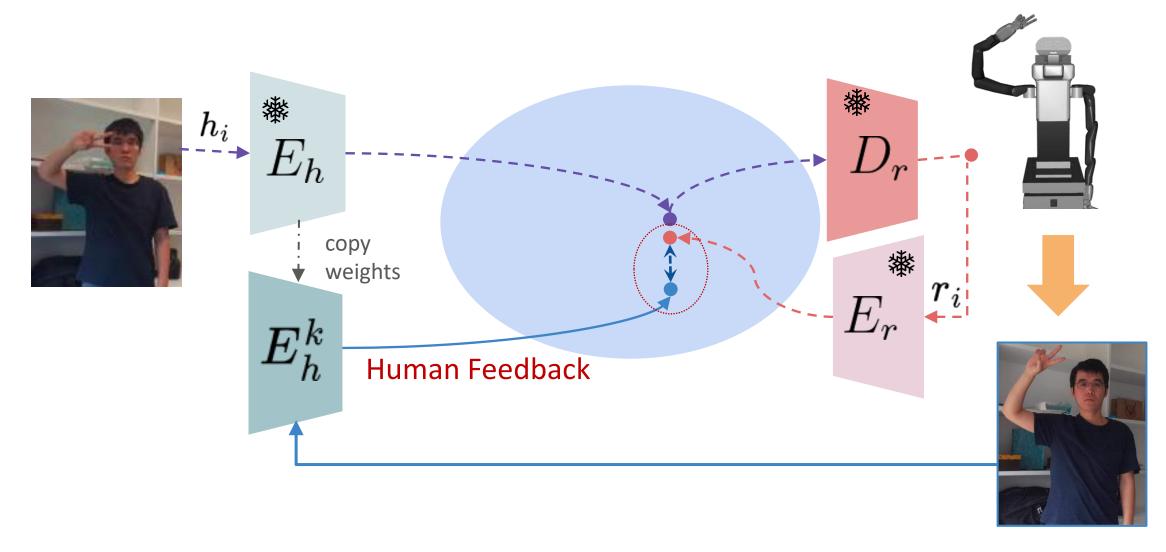
⁵Lead contact

*Correspondence: samuel.essler@psy.lmu.de https://doi.org/10.1016/j.cub.2023.08.084

ImitationNet: Unsupervised Human Motion Retargetting



ImitationNet Finetuning using a few Human Feedback data



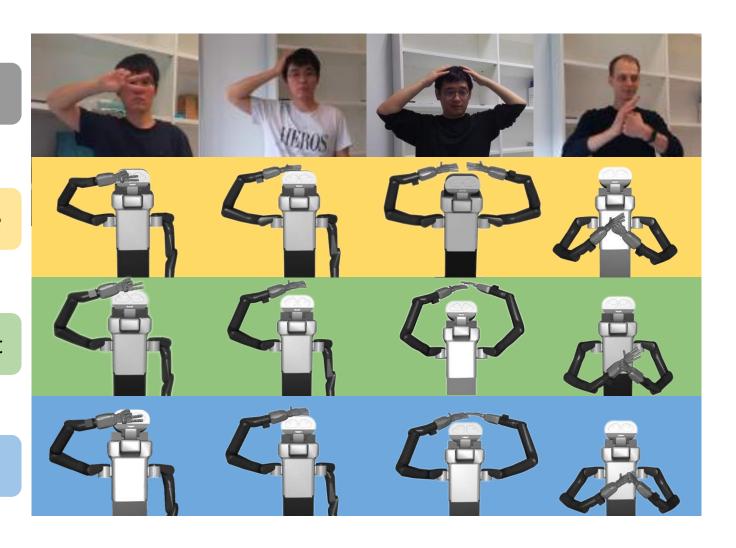
Performance of Personalized Motion Retargetting

Human

Ground True

ImitationNet

Ours



Human feedback

- reduces the gap between robot's perception of human motion and human's perception of robot motion.
- reinforces the coactivation of visual and motor representations

We saw *Interactive robot learning* procedure, but via human's feedback.

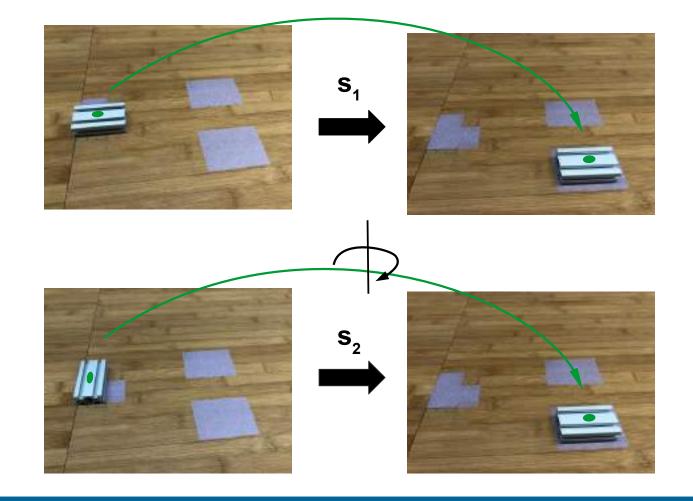
Robots remained passive.

Part II

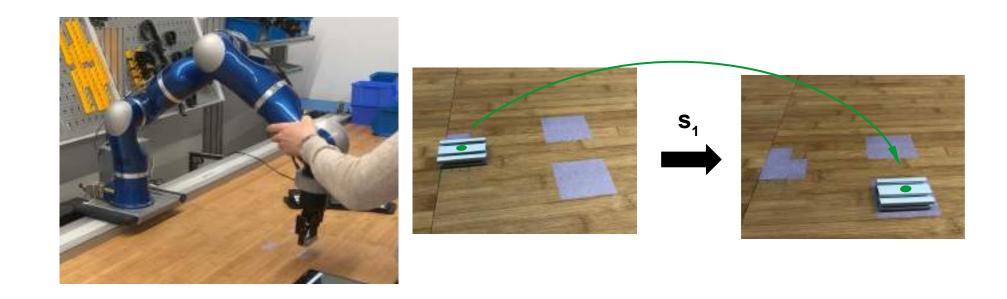
Pro-Active Robot Learning

Policy Learning by Noticing Anomalies

Proprioceptive Policy Learning without Vision

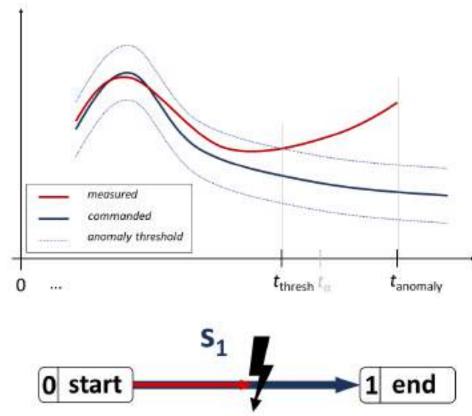


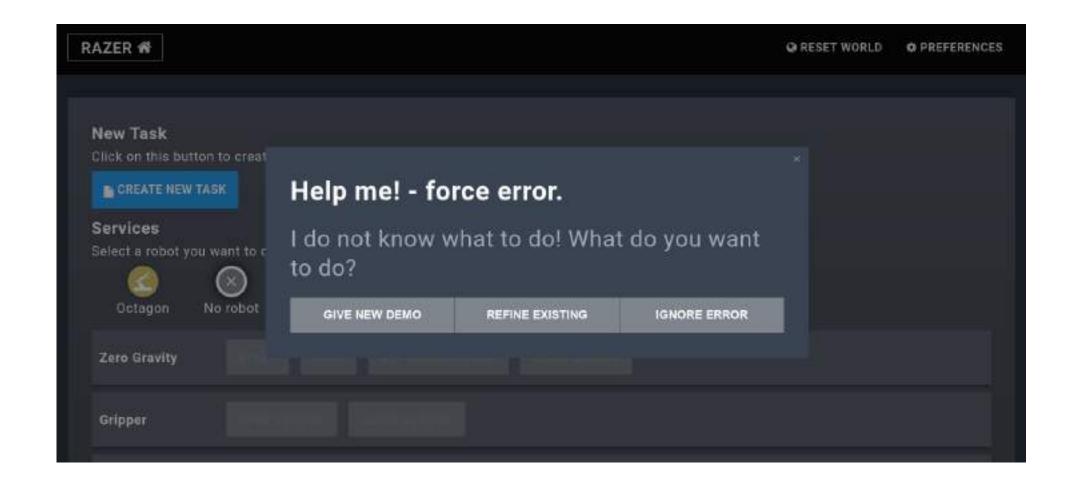
Initial Demonstration



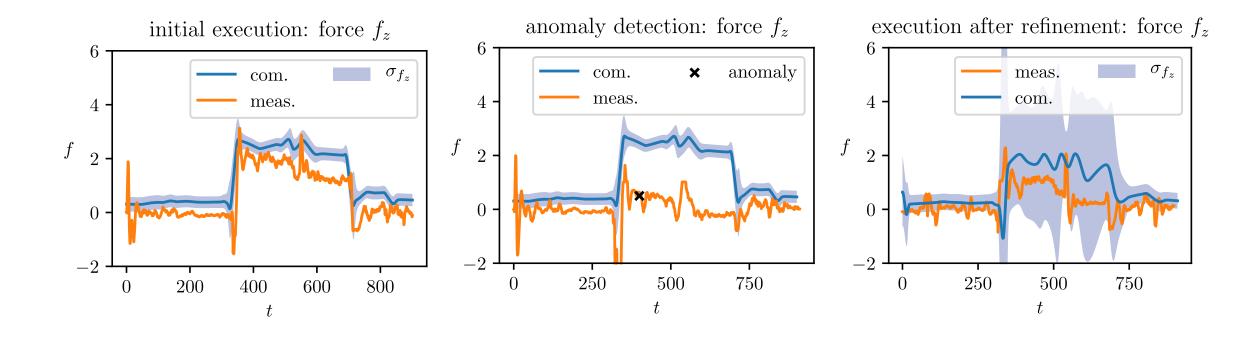
Task-Graph Generation

Monitored Execution: Anomaly Detection



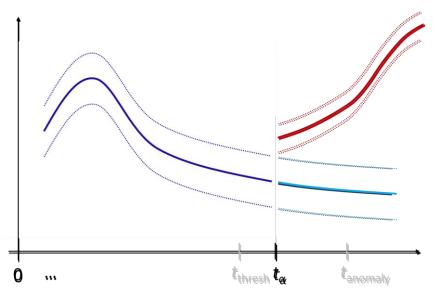


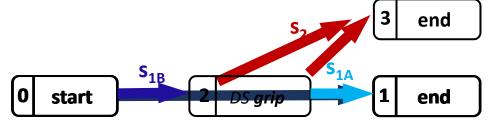
Skill Refinement



Add a New Skill to Task-Graph

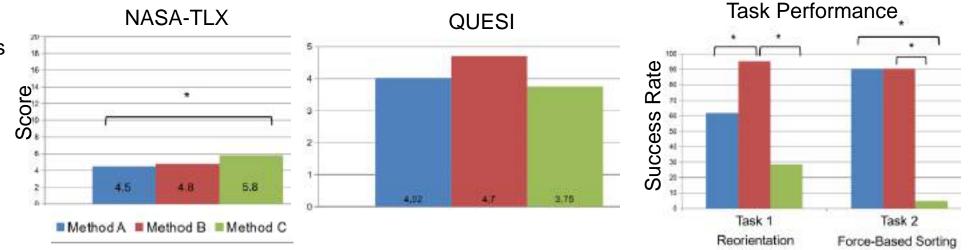




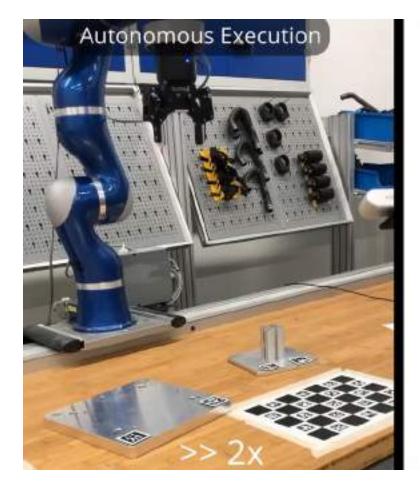


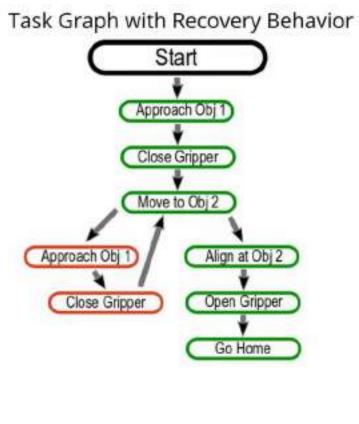
User Study on Interactive Programming and UI

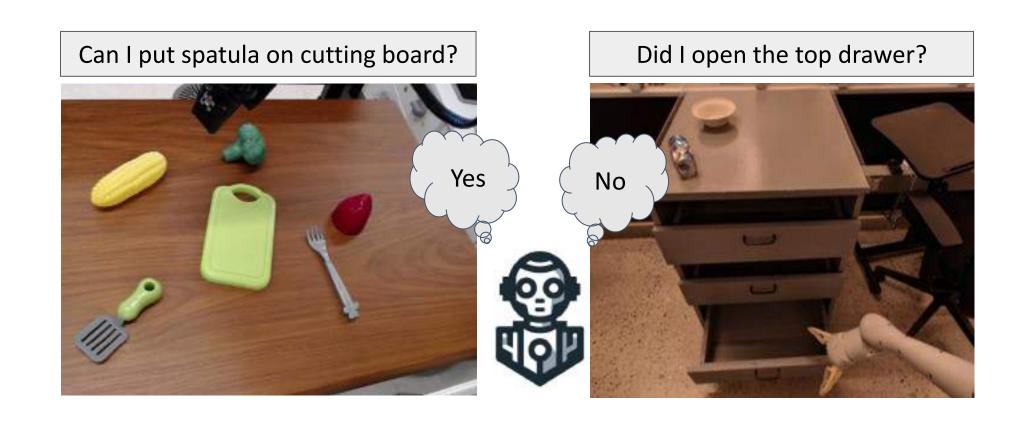
	Sequential Batch Programming (SBP)	Collaborative Incremental Programming (CIP)	User-triggered Incremental Programming (UIP)
Knowledge representation	sequential	sequential & branching	sequential & branching
Teaching Interaction	Unidirectional: passive data acquisition	Bidirectional: active data request	Unidirectional: passive data acquisition



Online task programming: Segmentation and Anomalies



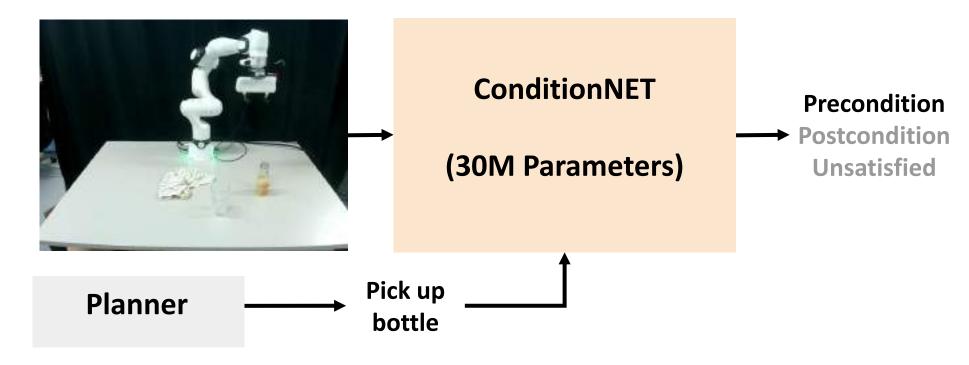




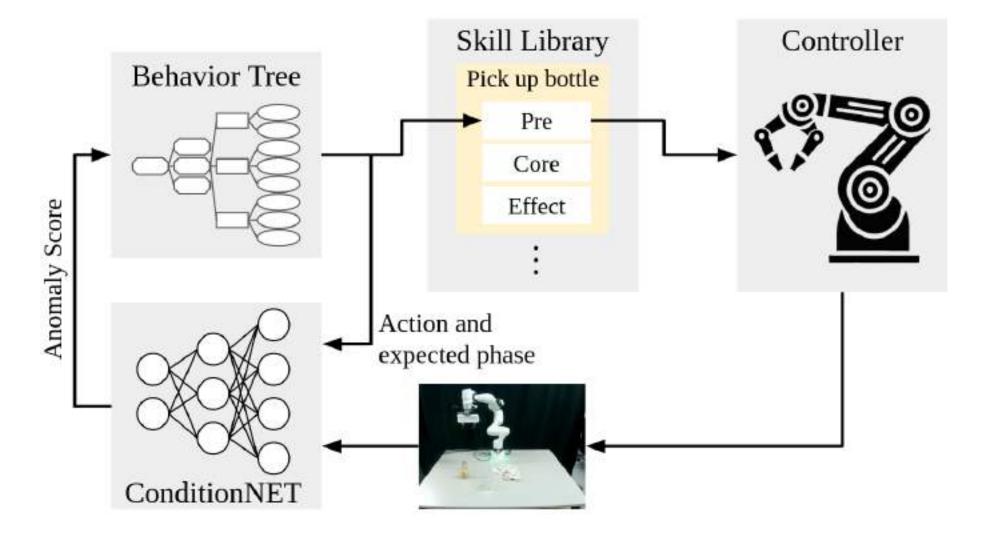
Anomaly Detection based on Pre- and Post-condition Learning

ConditionNET

- Visual-language model for action preconditions and effects.
- Training for consistent action representation
- Real-time execution monitoring.

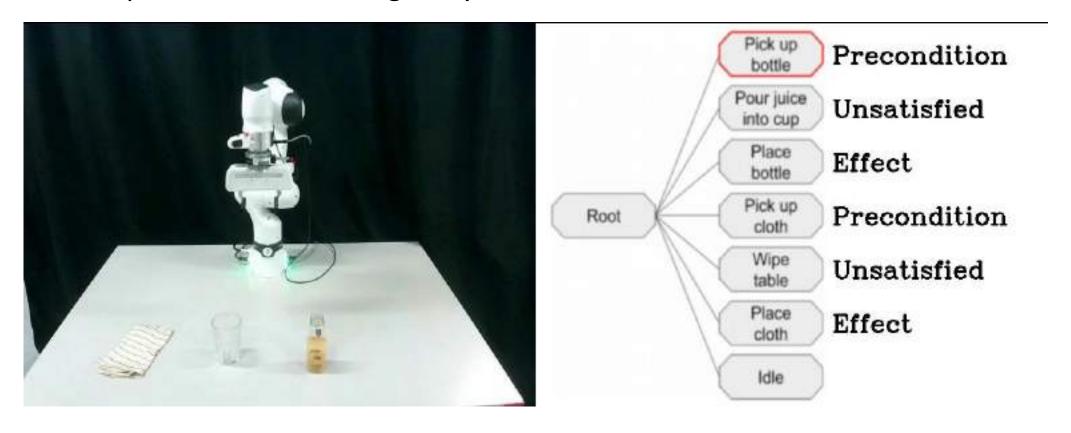


Planning, Execution, and Monitoring



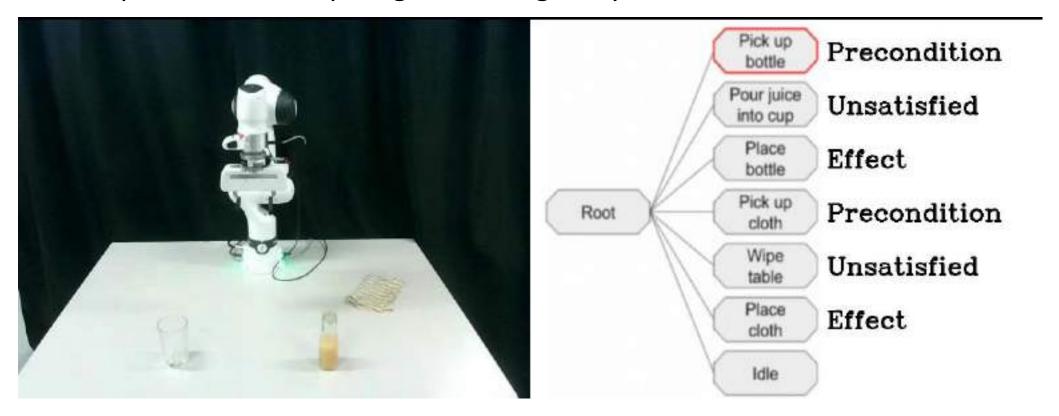
Monitoring Pre-/Post- Condition of Actions

Human perturbation – taking away items



Monitoring Pre-/Post- Condition of Actions

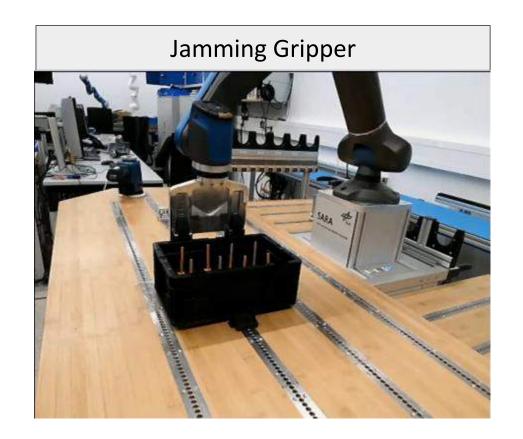
Human perturbation – spilling and taking away items



ConditionNET Evaluation on two datasets

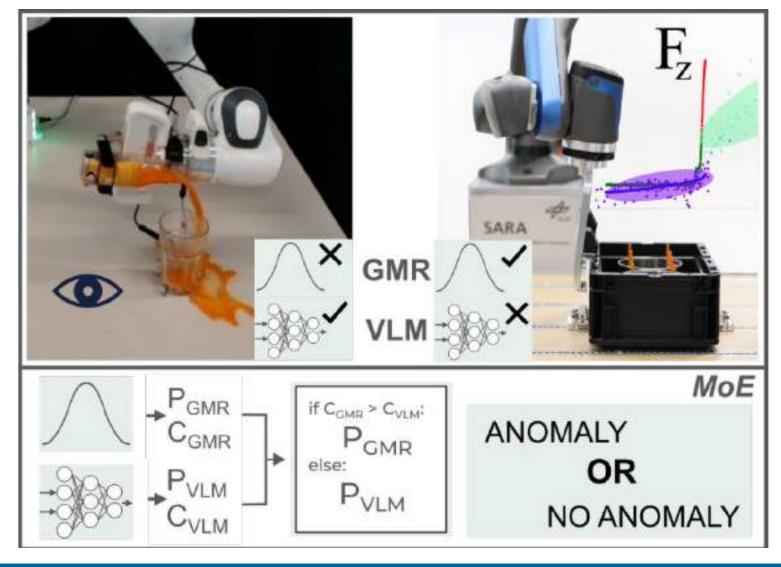
TABLE I: Quantitative evaluation.

FAILURE [19]											
	Anomaly Detection				Condition Learning						
Model	Acc	Pre	Rec	F1	Acc	Pre	Rec	F1			
CLIP+MLP	0.81	0.81	0.81	0.81	0.8	0.77	0.71	0.74			
DINO+MLP	0.82	0.82	0.84	0.8	0.78	$\overline{0.72}$	$\overline{0.67}$	0.69			
FinoNET [19]	$\overline{0.79}$	0.79	$\overline{0.79}$	0.79	-	-	-	-			
TP-VQA [2]	0.62	0.67	0.82	0.73	0.44	0.75	0.24	0.37			
ConditionNET	0.89	0.91	$\overline{0.89}$	0.88	0.88	0.85	0.79	0.82			
(Im)PerfectPour											
CLIP+MLP	0.86	0.91	0.86	0.87	0.93	0.79	0.77	0.78			
DINO+MLP	$\overline{0.72}$	$\overline{0.88}$	0.72	0.74	$\overline{0.85}$	0.74	0.7	0.72			
FinoNET [19]	0.74	0.80	0.74	0.74	-	-	-	-			
TP-VQA [2]	0.76	0.81	0.9	0.85	0.44	0.74	0.17	0.27			
ConditionNET	0.97	0.97	0.97	0.97	0.99	0.98	0.97	0.97			



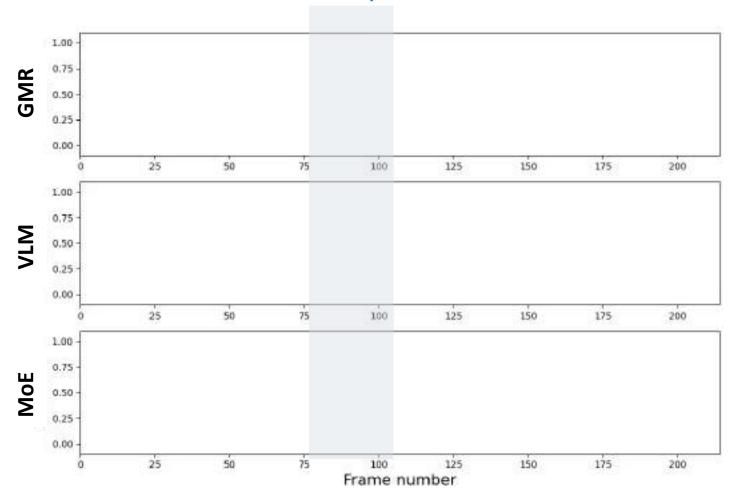
Mixture of Expertise: Proprioception and Exteroception

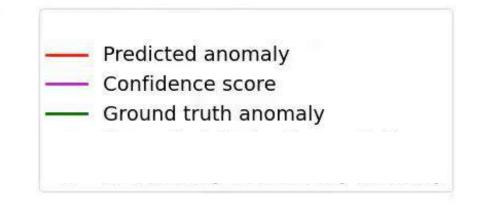
Multimodal anomaly detection



Push while Pouring

Propriocept expert detects push.

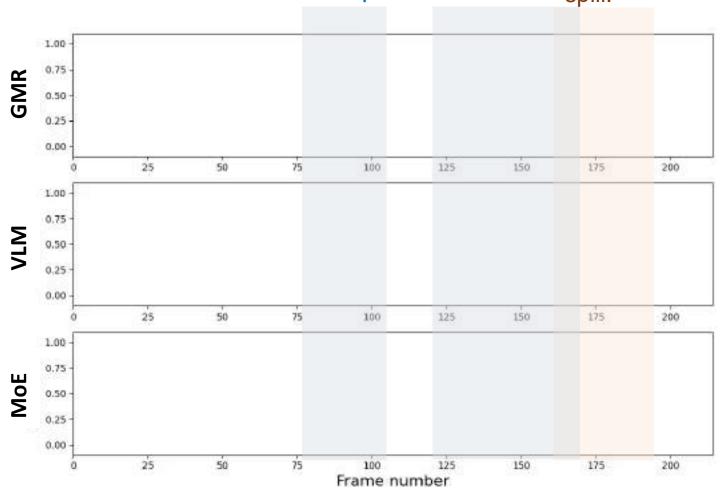


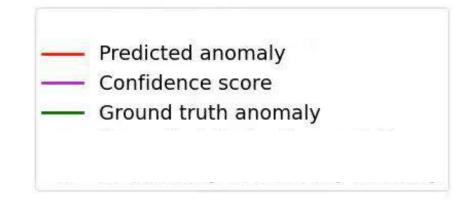


Push while Pouring

Propriocept expert detects push.

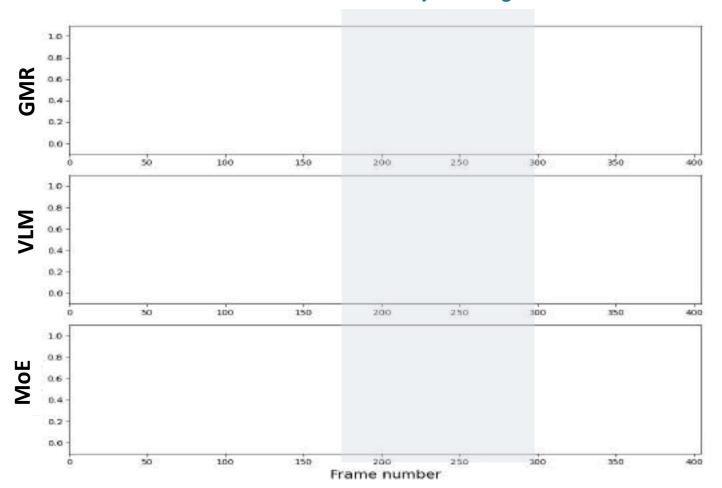
VLM detects spill.

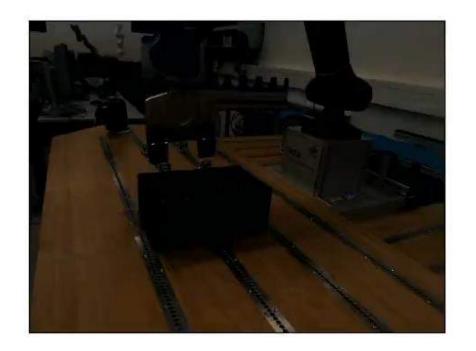


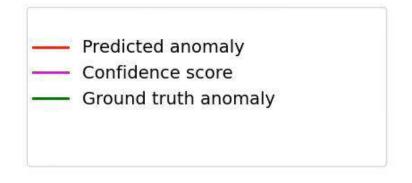


Hardware Failure

Propriocept expert detectsed jamming.

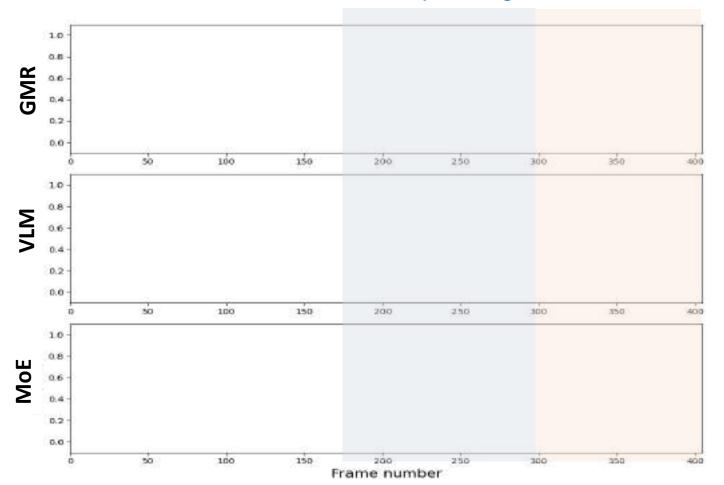


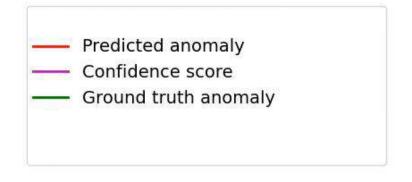




Hardware Failure

Propriocept expert VLM detected detectsed jamming. it later.





MoE improves Performance of individual Detectors

	Box-grasping							
Method	Acc	Pre	Rec	F1	F1@50	Del		
MoE (our)	88.1	96.6	82.6	88.3	86.4	0.47		
GMR	88.8	100	81.7	87.4	78.9	1.20		
CondNET	79.8	95.9	73.2	81.6	75.0	1.23		
	ſ		Pouri	ıg				
Method	Acc	Pre	Rec	F1	F1@50	Del		
MoE (our)	88.7	88.7	88.1	87.2	84.7	-0.3		
GMR	84.5	86.9	81.0	83.3	76.7	-0.4		
CondNET	75.8	88.0	67.2	70.2	69.3	0.4		

Summary

- Go beyond Passive Unidirectional Batch Learning
- Interactive Continual Learning clarifies the teacher's intended goal of the task.
- Proactive Interactive Continual Learning: Self-Awareness can lead to Proactive Learner and leap at learning speed and task performance.

What's the holy grail in robot learning?

Proactive Interactive continual learning

Foundation VLA model pretrained with web-scale data

For embodied intelligence, tactile and priprioception is essential.

22nd IEEE International Conference on Advanced Robotics and its Social Impact (ARSO 2026) Vienna, Austria 10th – 12th June 2026

Organized Session proposals 9^{zh} **December 2025**

Full Paper submission 22nd January 2026

Notification of acceptance 22nd March 2026

Final paper submission 23rd April 2026

venue & access in the middle of Europe

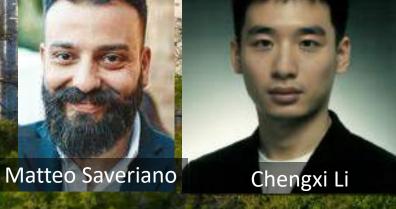
General Co-Chairs

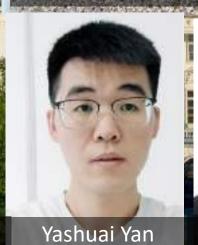
Dongheui Lee

Sebastian Schlund

Thank you for your attention

Thanks to team members and collaborators





Alejandro Agostini