# Robot Learning Ensuring Stability and Robustness to Irreversible Events

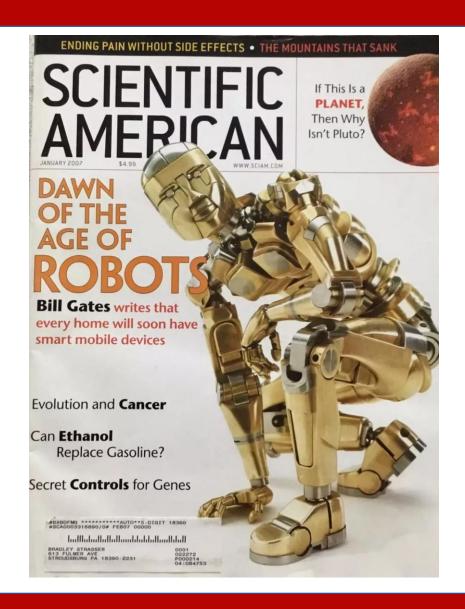
Pietro Falco pietro.falco@unipd.it



ELLIIT Symposium on Robot Learning Lund, 20/11/2025



### A Robot in Every Home



Well known article by Bill Gates in 2007

 "Robots will become as pervasive as Personal Computers."

After 18 year, what is the status?

### **Modern Robotics**

Transition from production lines to unstructured, anthropic environments

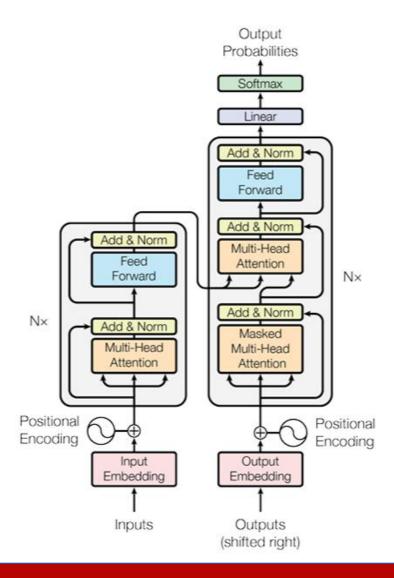






We want that nontechnical users can be able to instruct the robot

### Transformer-based Architectures



#### Attention Is All You Need

Ashish Vaswani\* Google Brain avaswani@google.com Noam Shazeer\*
Google Brain
noam@google.com

Niki Parmar\* Jakob Uszkoreit\*
Google Research
nikip@google.com usz@google.com

Llion Jones\*
Google Research
llion@google.com

Aidan N. Gomez\* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* † illia.polosukhin@gmail.com

Focus on relevant parts of the input sequence

### **Example of Technologies**

| Model Type                           | Modalities | Input/Output | Training Method          | Example Models      |
|--------------------------------------|------------|--------------|--------------------------|---------------------|
| <b>LLM</b> (Large<br>Language Model) | Language   | Text → Text  | Self-supervised learning | GPT, BERT,<br>LLaMA |

Image + Text  $\rightarrow$ 

Image + Text  $\rightarrow$ 

Text

Action

Self-supervised

learning

Supervised

imitation learning

CLIP, Flamingo

RT-2, HELIX, PIO,

**OpenVLA** 

VLM (Vision-Language Model) Vision + Language

Vision + Language

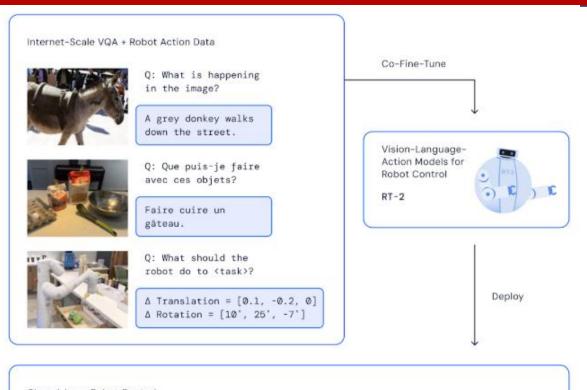
+ Action

**VLAM** (Vision-

Model)

Language-Action

### VLAM - Robot Transformer 2 (RT-2)

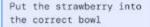


Output are high-level actions, separate motion planner



Closed-Loop Robot Control





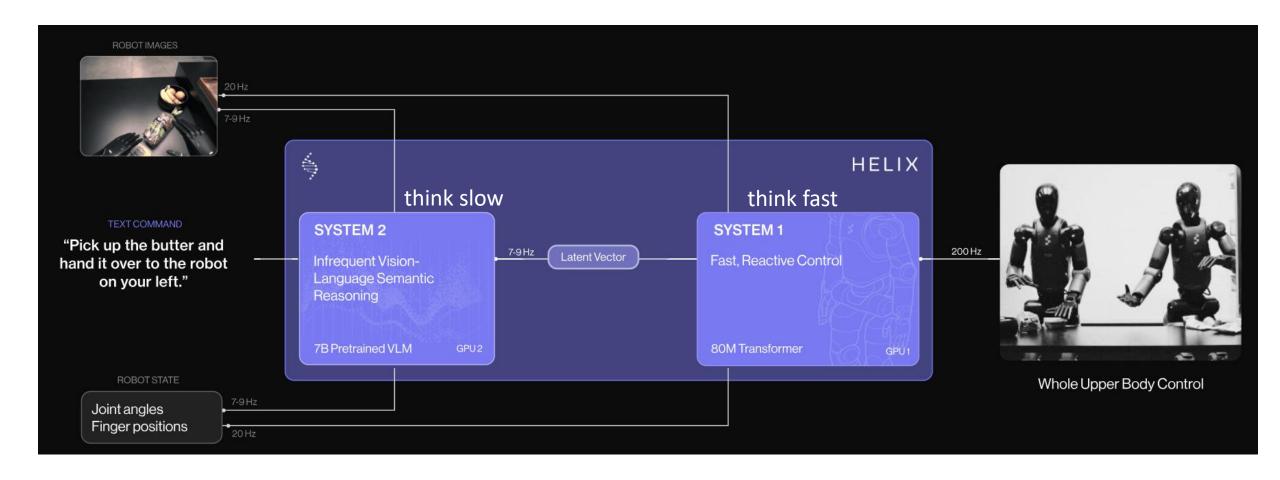


Pick the nearly falling bag

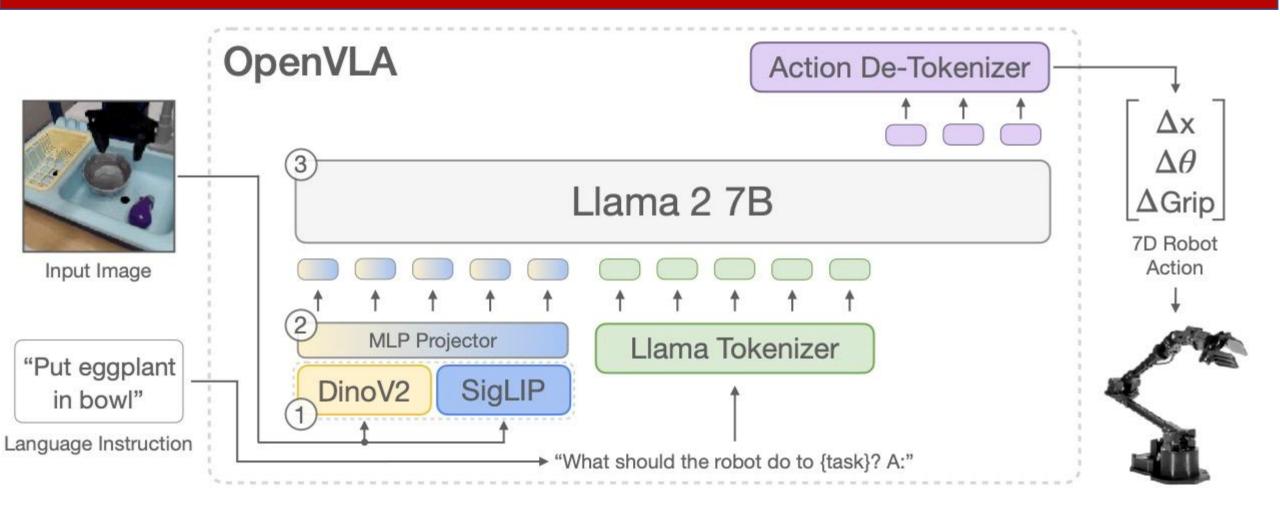


Pick object that is different

### Visual Language Action Models (VLAM) - Helix

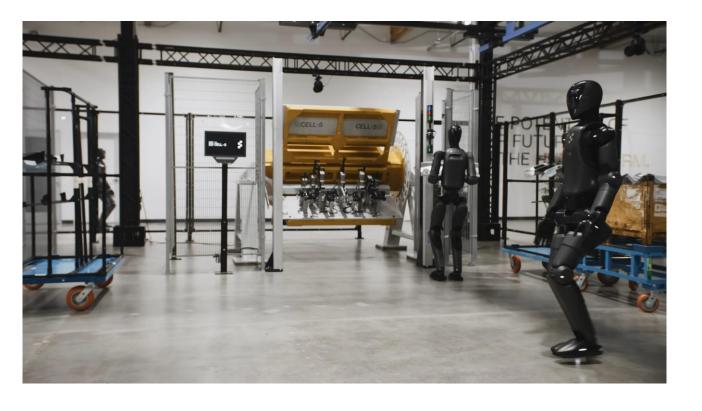


### A Open Source Architecture



### **Example of First Industrial Applications**

### Figure Al Robot – Pilot @BWM

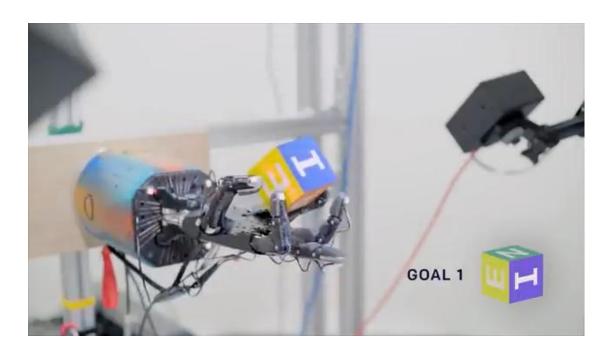


# Transformer-based arcitectures:

- Strong breakthrough in human-robot interface and General AI
- Still work to do on safe adaptation in real environments

Reinforcement Learning can give a contribution on adaptation skills

### RL in Manipulation - Sim2real





### RL in Locomotion



Boston Dynamics and AI & Robotics Institute, 2025

It uses **human motion capture** to learn natural motion pattern

#### RL is used for adaptation:

- To learn terrain-aware gait adjustments
- To correct for uncertainties or dynamics not modeled in the MPC
- Sim2real transfer
- To fine-tunes behaviors to match reference under robot dynamics

# Some Key Challenges in Real-World Adaptation

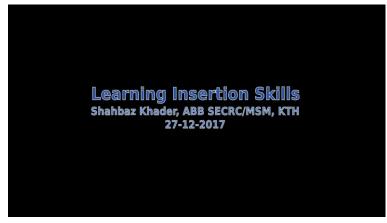
- 1. High number of rollouts, potentially also in sim2real

  Many works in the scientific community to reduce rollouts on the real robot (model-based reinforcement learning, sim2real)
- 2. Irreversible events
- 3. Ensuring formal guarantees during the different rollouts, e.g. stability certification
- 4. Express reward/cost functions without technical skills

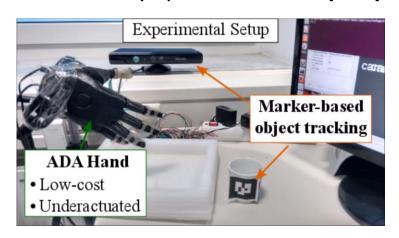
### **Irreversible Events**



Typically, it is assumed that the robot can try an infinite number of rollouts, returning to the initial state after each rollout and continue the exploration phase



Is it always possible to **keep exploring in reality**?





In real applications irreversible events happen, which can make impossible for the robot to keep learning autonomously.

### Irreversible events

Question: how do we increase the robustness to irreversible events?

### Sim2Real based solution

- The topic of irreversible events is not well-covered in the robotics literature
- Similar approaches are sim-to real
- Introducing disturbances in simulation, with the aim to get a more robust policy
- Typical in Locomotion
- In real world unpredictable scenario it is difficult to totally ovoid fine tuning

### Sim-to-Real Learning for Bipedal Locomotion Under Unsensed Dynamic Loads

Jeremy Dao, Kevin Green, Helei Duan, Alan Fern, Jonathan Hurst

Collaborative Robotics and Intelligent Systems Institute Oregon State University

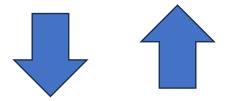
International Conference on Robotics and Automation, 2022



# How do we tackle the problem?



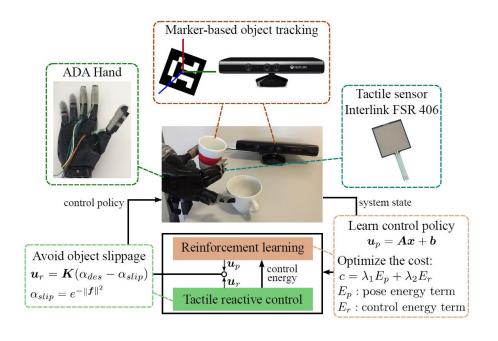
Reinforcement Lerning



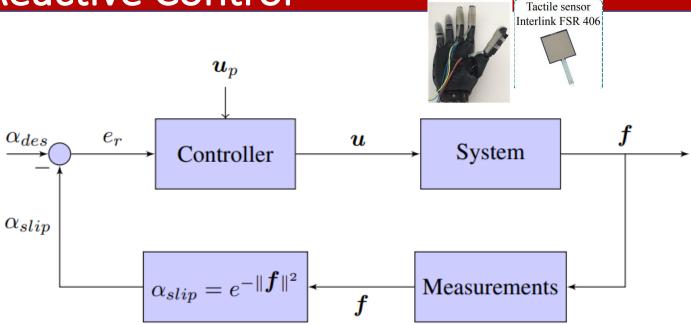
Sensor-based Control

The RL learns the task and, at the same time, minimize the need of intervention of reactive control in future executions.

**Intervenes to avoid irreversible events** when needed







$$oldsymbol{u} = oldsymbol{u}_p + oldsymbol{u}_r,$$

$$oldsymbol{u}_r = oldsymbol{K} e_r,$$

$$egin{array}{lcl} oldsymbol{u} &=& oldsymbol{u}_p + oldsymbol{u}_r, \ oldsymbol{u}_r &=& oldsymbol{K}e_r, \ e_r &=& lpha_{slip} - lpha_{des}, \end{array}$$

$$E_r = |\alpha_{slip} - \alpha_{des}|$$

*u*: vector of motor commands

 $u_p$ : command from RL layer

 $u_r$ : command from reactive control

 $\alpha_{slip}$ : slipping factor

 $E_r$ : reactive pseudoenergy

# Reinforcement Learning

$$c = \lambda_1 E_p + \lambda_2 E_r,$$
  

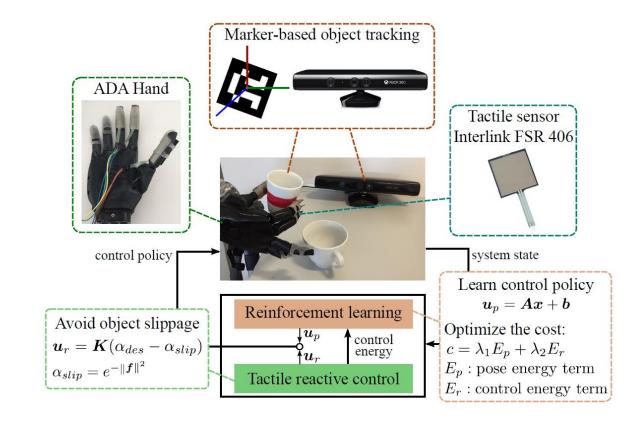
$$E_p = 1 - e^{-||\phi - \phi_{des}||^2},$$
  

$$E_r = |\alpha_{slip} - \alpha_{des}|,$$

 $E_p$  is related to object orientation error  $E_r$  is related to reflexes intervention

The RL algorithms minimizes both!

The system learn to avoid the need of reflexes



# Experimental Results – PILCO RL algorithm

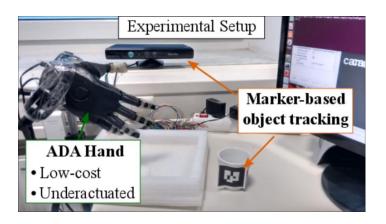


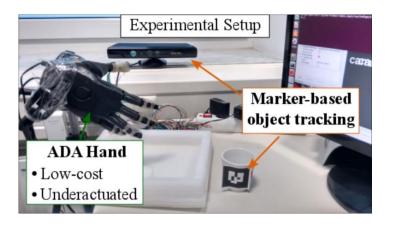
#### Visual and tactile data. no synergy

|            | 1  | 1.0  |      |      |      |         |              |          |      |      |      |      |
|------------|----|------|------|------|------|---------|--------------|----------|------|------|------|------|
|            | 2  | 0.94 | 0.18 | 0.11 | 0.04 | 0.07    | 0.08         | 0.17     | 0.19 | 0.13 | 0.25 | 0.19 |
|            | 3  | 0.92 | 0.12 | 0.18 | 0.07 | 0.15    | 0.13         |          |      |      |      |      |
|            | 4  | 0.87 | 0.07 | 0.13 | 0.05 | 0.11    | 0.09         | 0.15     |      |      |      |      |
| #1 s       | 5  | 0.78 | 0.19 | 0.13 | 0.15 | 0.21    | 0.15         | 0.13     | 0.2  | 0.17 | 0.11 | 0.05 |
| Trials [#] | 6  | 0.72 | 0.23 |      |      |         |              |          |      |      |      |      |
| I          | 7  | 0.51 | 0.11 | 0.09 | 0.09 | 0.03    |              |          |      |      |      |      |
|            | 8  | 0.51 | 0.08 | 0.09 | 0.18 | 0.11    |              |          |      |      |      |      |
|            | 9  | 0.5  | 0.04 | 0.15 | 0.03 |         |              |          |      |      |      |      |
|            | 10 | 0.44 | 0.03 |      |      |         |              |          |      |      |      |      |
|            | •  | 1    | 2    | 3    | 4    | 5<br>Ro | 6<br>ollouts | 7<br>[#] | 8    | 9    | 10   | 11   |

#### Learning-control synergy

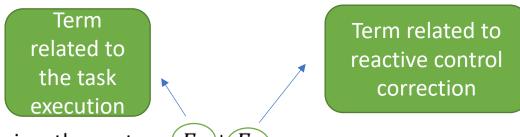
| 1              | 0.94         | 0.17 | 0.15 | 0.04 | 0.07 | 0.17 | 0.04 | 0.02 |      |      |      |
|----------------|--------------|------|------|------|------|------|------|------|------|------|------|
| 2              | 0.92         | 0.17 | 0.04 | 0.02 |      |      |      |      |      |      |      |
| 3              | 0.78         | 0.07 | 0.05 | 0.04 | 0.02 |      |      |      |      |      |      |
| _ 4            | 0.75         | 0.04 | 0.04 | 0.03 |      |      |      |      |      |      |      |
| Trials [#]     | 0.75         | 0.17 | 0.04 | 0.03 |      |      |      |      |      |      |      |
| E 6            | 0.69         | 0.08 | 0.05 | 0.02 |      |      |      |      |      |      |      |
| <sup>-</sup> 7 | 0.6          | 0.14 | 0.06 | 0.15 | 0.01 |      |      |      |      |      |      |
| 8              | 0.56         | 0.1  | 0.17 | 0.16 | 0.14 | 0.15 | 0.04 | 0.02 |      |      |      |
| 9              | 0.5          | 0.12 | 0.1  | 0.1  | 0.05 | 0.03 |      |      |      |      |      |
| 10             | 0.49         | 0.2  | 0.09 | 0.15 | 0.16 | 0.1  | 0.18 | 0.17 | 0.16 | 0.09 | 0.19 |
|                | 1            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   |
|                | Rollouts [#] |      |      |      |      |      |      |      |      |      |      |



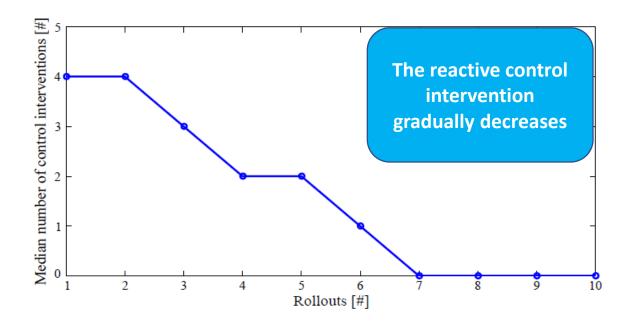


### Behavior of the Reactive Control Interventions





- The Reinforcement learning module minimizes the cost  $c = E_p + E_r$ 
  - The need for the reactive control correcting the trajectories decreases over the rollouts
  - The stronger is the correction from the reactive control, the larger is  $E_r$



### Conclusion

 Synergy between slow-thinking reactive layer and reinforcement learning strategies can enable the learnability

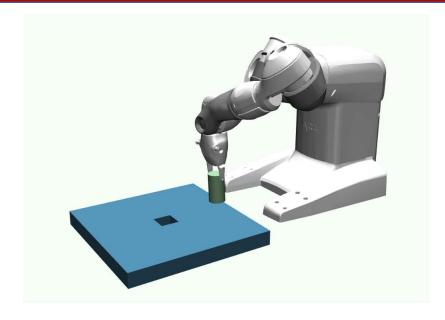
# Some Key Challenges in Adaptation

- 1. High number of rollouts, potentially also in sim2real

  Many works in the scientific community to reduce rollouts on the real robot (model-based reinforcement learning, sim2real)
- 2. Irreversible events
- 3. Ensuring formal guarantees (stability) during the different rollouts
- 4. Express reward/cost functions without technical skills

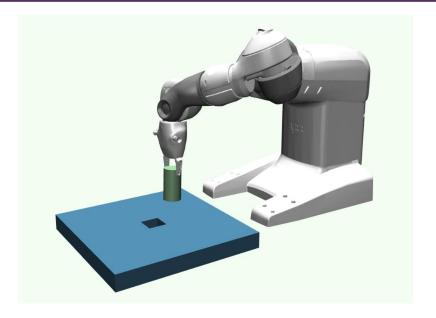
### Do We Need Stability Certification in RL?





*Classical methods* Any trial could diverge away from the goal

- No measure of safety or predictability in the initial stages
- Some predictability in the later stages



#### Proposed approach RL with stability guarantee

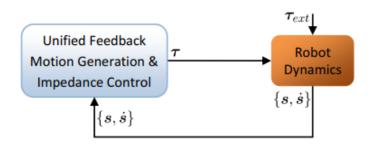
**CEM** Every trial tends to the goal with a guarantee

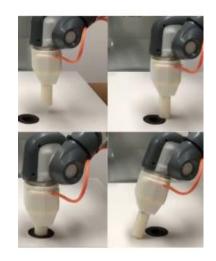
- Stability maintained despite random policy initialization and exploration
- A good measure of safety and predictability in all stages

# Stability in Learning Contact-rich Tasks



- In an RL context, stability corresponds to a guarantee that any rollout is bounded in state space and tends to the goal position demanded by the task
- The policy should ideally have only one stable equilibrium point at the goal
- In real-world applications, it is important to make the exploration predictable
- We need to choose a suitable policy representation and policy search





# Policy Representation: I-Mogic

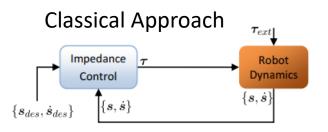
We use I-Mogic a control policy structure for contact rich tasks

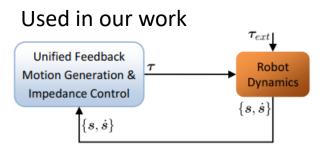
$$\mathbf{u} = -\mathbf{S}^{0}s - \mathbf{D}^{0}\dot{s} - \sum_{k=1}^{K} w^{k}(s)[\mathbf{S}^{k}(s - s^{k}) + \mathbf{D}^{k}\dot{s}]$$

- $S^k$  are stiffness matrices,  $D^k$  damping matrices,  $w^k(s, l^k)$  are weighting coefficients
- It is a combination of mass-spring-damper systems

 The origin of the state space is the only equilibrium point and it is stable if the following conditions are met

$$\boldsymbol{S}^0 = (\boldsymbol{S}^0)^T \succ 0 \quad \boldsymbol{D}^0 \succ 0$$
$$\boldsymbol{S}^k = (\boldsymbol{S}^k)^T \succeq 0 \quad \boldsymbol{D}^k \succeq 0 \quad l^k > 0 \quad \forall k = 1, ..., K$$





### Policy Search – Wishart Distribution

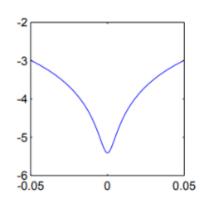
- We have to ensure that the robot adopts only stable policies at each rollout
- We use the Wishart Distribution to sample only symmetric positive-definite matrices

$$S \sim \mathcal{W}_D(S|W,\nu)$$

$$S \in \mathbb{R}^{D \times D}$$
$$W \in \mathbb{R}^{D \times D}$$

We used the following reward:

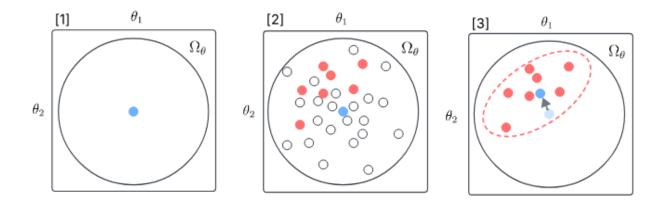
$$r_{\ell}(d) = wd^2 + v\log(d^2 + \alpha).$$



### Cross-entropy Method for Policy Search

#### Given:

- A policy  $\pi_{ heta}(s)$  with parameters  $heta \in \mathbb{R}^d$
- An evaluation function (e.g., total reward from a rollout)
- ullet A Gaussian distribution over parameters:  $heta \sim \mathcal{N}(\mu, \Sigma)$



#### Repeat for each iteration:

- 1. Sample N parameter vectors  $heta^{(1)},\dots, heta^{(N)}$  from  $\mathcal{N}(\mu,\Sigma)$
- 2. Evaluate each sampled policy by running it in the environment and recording its total reward
- 3. **Select** the top K samples with the highest rewards ("elite samples")
- 4. **Update** the mean  $\mu$  and standard deviation  $\Sigma$  using only the elite samples
- 5. Repeat until convergence or a maximum number of iterations is reached

### **Experimental Results**

#### Stability-Guaranteed Reinforcement Learning for Contact-rich Manipulation

Shahbaz A. Khader<sup>1,2</sup>, Hang Yin<sup>1</sup>, Pietro Falco<sup>2</sup> and Danica Kragic<sup>1</sup>

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

<sup>1</sup>Robotics, Perception, and Learning lab, Royal Institute of Technology, Sweden. {shahak, hyin, dani}@kth.se.

<sup>2</sup>ASEA Brown Boveri (ABB) Corporate Research, Sweden. pietro.falco@se.abb.com.

Correspondence to shahak@kth.se.

# Stability certification tends also to reduce the number of rollouts needed

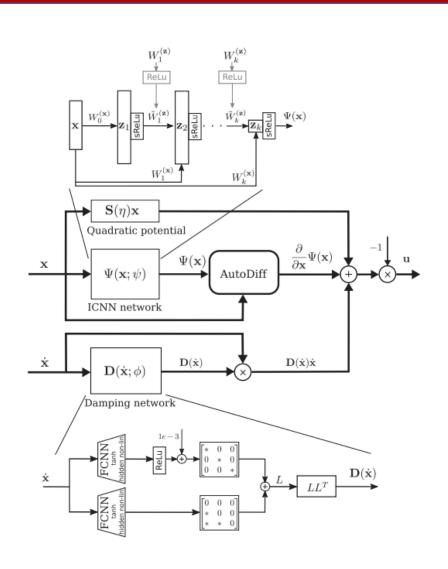
### **Potential Limitation**

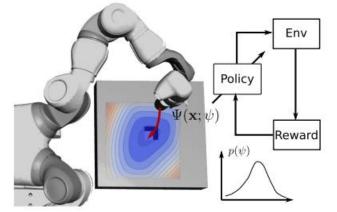
I-Mogic has a structured policy.

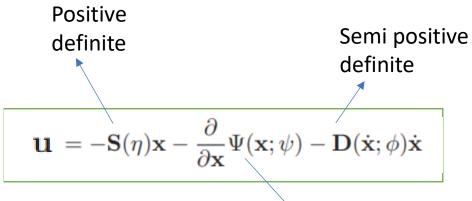
$$\mathbf{u} = -\mathbf{S}^{0}s - \mathbf{D}^{0}\dot{s} - \sum_{k=1}^{K} w^{k}(s)[\mathbf{S}^{k}(s - s^{k}) + \mathbf{D}^{k}\dot{s}]$$

- What if we want to have more complex behaviors?
- Is it possible to use deep learning?

# **Energy Shaping Policy via Deep Networks**







#### **ICNN (Input Convex Neural Network)**

- a special type of neural network where the output is guaranteed to be convex with respect to its input.
- Useful to learn an energy function

#### **Quadratic Potential:**

To guarantee strong convexity

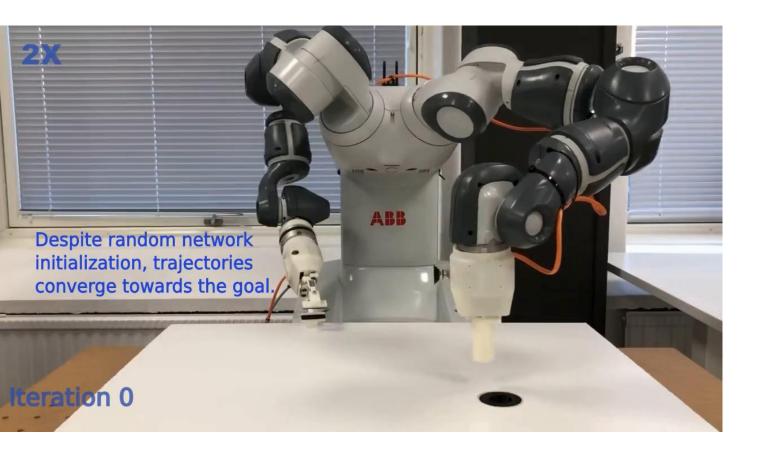
#### Damping (fully connected network):

 To guarantee a smooth motion, designed to be semipositive definite, ensure passivity

Convex

function

# **Energy Shaping Policy**



We guarantee stability all-the-time stability with a more expressive policy

The reward function is still handcrafted bu the user. Can we specify it with natural language?

# Some Key Challenges in Adaptation

- 1. High number of rollouts, potentially also in sim2real

  Many works in the scientific community to reduce rollouts on the real robot (model-based reinforcement learning, sim2real)
- 2. Irreversible events
- 3. Ensuring formal guarantees during the different rollouts
- 4. Express reward/cost functions without having technical skills

### Next Step: Automate Reward Generation

We would like to generate rewards from human natural language



**Task definition** 

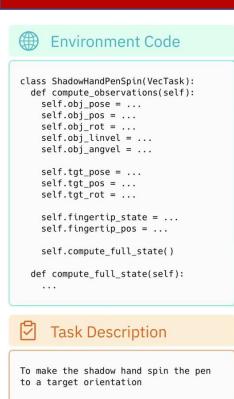
What skill should the robot learn

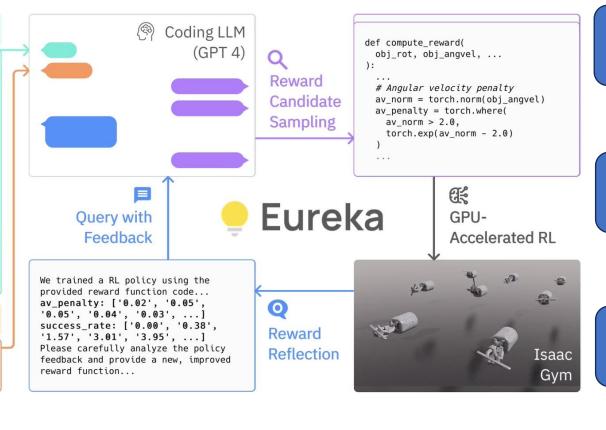
Reward generation

and

**Agent training** 

# Eureka Approach





Multiple Reward Function
 Generation
 From taks description via LLM



2. Evaluation in parellel on Isaac Gym



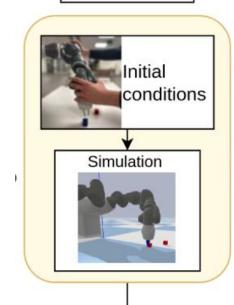
3. Results are reported back to the LLM



4. Until convergence go to step 1

# Reward Based on task Description

Initialization



#### Define Agent's Task:

- -High Level task description
- -Failure condition
- -Success condition



#### Task description:

"The robot's gripper is close to a blue cube, touch it with the gripper fingers and push it close to the red cube."

#### Success condition:

"Consider the task solved it the distance between the cubes is less than 0.04 meters."

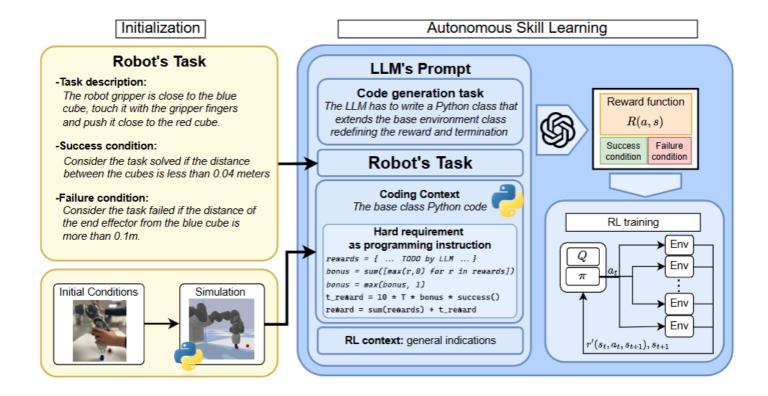
#### Failure condition:

"Consider the task failed if the distance between the end effector and the blue cube is more than 0.1 meters."

# **ARCHIE Approach**

We want to learn reward functions for manipulation in one-shot

How to do that?



### Naive Reward Generation

#### **GPT-4 prompt**

Code generation task description

#### Robot's task:

- -Task description
- -Success condition
- -Failure condition



Coding context

```
rewards_dict = {
    "dist_blue": -dist_blue,
    "dist_red_blue": -dist_red_blue
    "contact_reward": int(finger_1) + int(finger_2)
}
reward = sum([r for r in rewards_dict.values()])
```

Rewards generated by the LLM are generally coherent with the task definition. They are generally numerically unstable, causing the agent to over-visit non-terminal states, i.e. where the task is not solved.

$$\sum_{k=1}^{K} r^{k}(s_{t}, a_{t}) + R_{F}(s_{t}, a_{t})$$

### **ARCHIE: Solution for Reward Generation**

We Want to guarantee that following term:

$$R_F(a_t, s_t) \gg \sum_{t=0}^{T-1} r(s_t, a_t, s_{t+1})$$

by introducing the

$$r(s_t, a_t, s_{t+1}) = \sum_{k=1}^{K} r^k(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^- \in K^-} r^{k^-}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t) + \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$= \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t)$$

$$\Phi(s_{t+1}) = 1 \text{ if task is solved in } s_{t+1},$$
 0 otherwise 
$$R_F(a_t, s_t) \Phi(s_{t+1})$$
 
$$R_F(a_t, s_t) = 10T \max \left( \sum_{k^+ \in K^+} r^{k^+}(s_t, a_t), 1 \right)$$

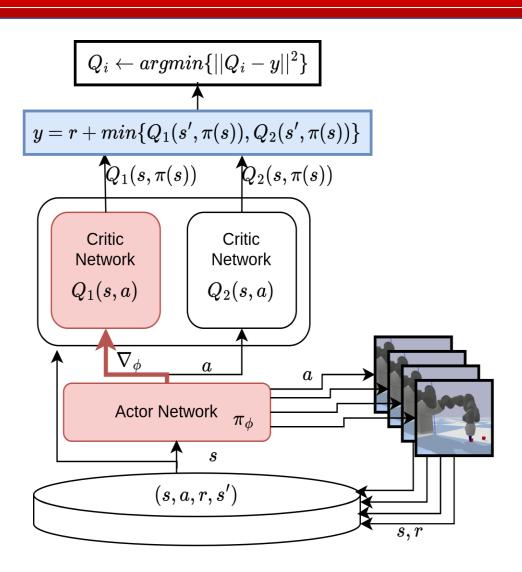
$$R_F(a_t, s_t) \gg \sum_{t=0}^{T-1} r(s_t, a_t, s_{t+1})$$

# Autonomous skill learning: Agent training

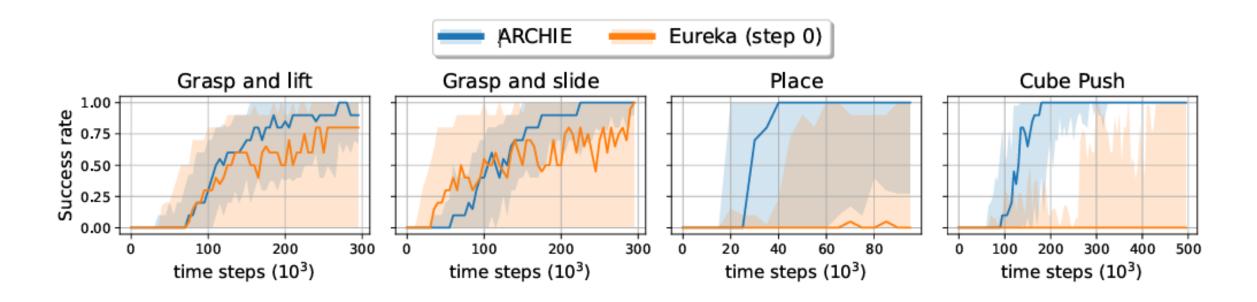
Soft Actor Critic, with parallel exploration:

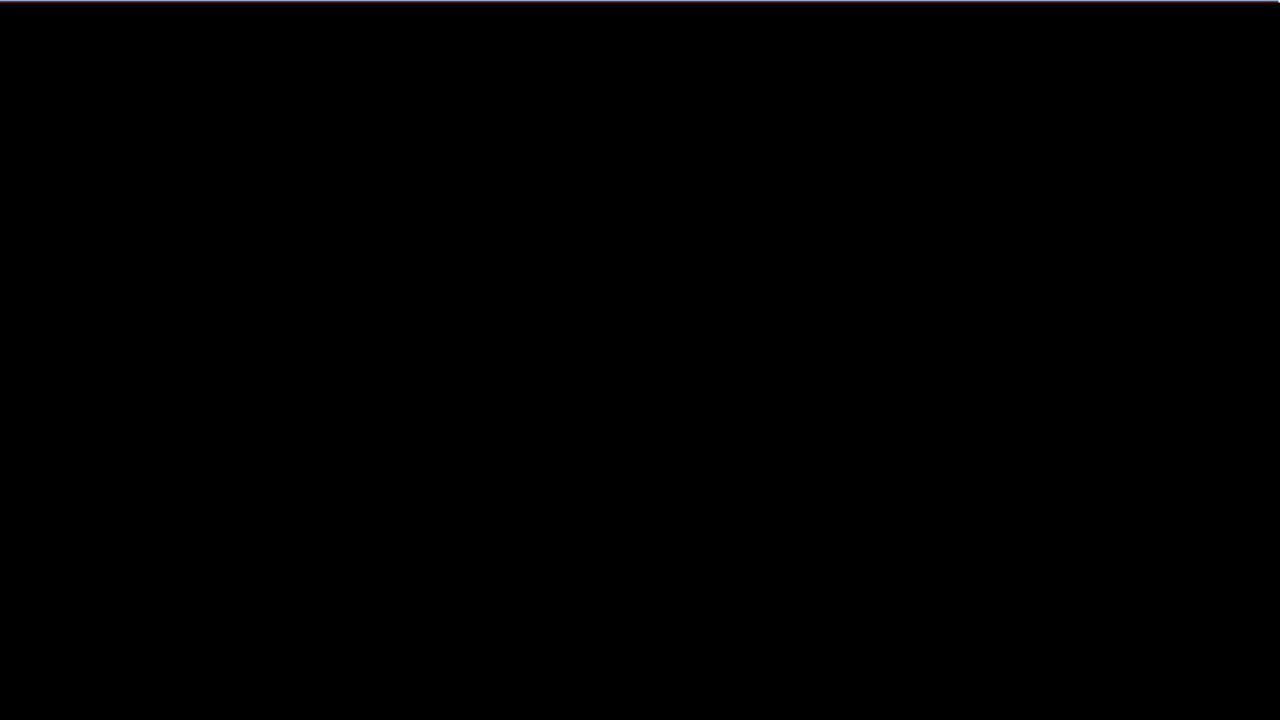
 Stochastic Off-Policy Deep Reinforcement Learning algorithm;

 Very popular in robotics, due to the stochastic policy exploration properties.



# Results





# Comparison of the two approaches

| Aspect             | ARCHIE                                           | Eureka                                                                   |  |  |  |
|--------------------|--------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| Approach           | One-shot reward generation via GPT-4             | <b>Iterative</b> reward refinement via GPT-4 + reward feedback loop      |  |  |  |
| LLM usage          | Generates reward code from natural language once | Generates multiple reward candidates, refined through in-context updates |  |  |  |
| Refinement loop    | None: single generation                          | Yes, guided by RL training outcomes                                      |  |  |  |
| Reward structure   | Structured: shaping + terminal reward.           | Arbitrary executable Python reward functions                             |  |  |  |
| Simulation backend | PyBullet, Mujoco, test on real ABB YuMi          | Isaac Gym (massively parallel GPU RL)                                    |  |  |  |
| RL algorithm       | SAC (continuous control)                         | Evolutionary + PPO                                                       |  |  |  |
| Target domain      | Industrial manipulation, sim2real                | Dexterous manipulation, locomotion, curriculum learning                  |  |  |  |

# Take-Home Message

 Learning alone is often not enough in real worlds— formal guarantees and robustness to irreversible events are important in human-centered robotics.

 We need robots that have a good trade-off between predictability, formal guarantees, and exploration.

 Using the power of transformer-based technologies can potentially allow robot to learn based on feedback and communication with humans

November 27, 2025 Slide 45

# Acknowledgement













