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Why do we want 6G localization and sensing?

Extended
reality Digital twin  Improving

. . LY Emeraenc Wymeersch, H. and Seco-Granados, G.,
E : communication CSH y 2022. Radio localization and sensing—Part I:
! ! : ocalizati Fundamentals. IEEE Communications
Cooperating | : o ocalization Letters, 26(12), pp.2816-2820.
| robots i Autonomous Navigation
| drive; : ' Wymeersch, H. and Seco-Granados, G.,
: : ! v : 2022. Radio Localization and Sensing—Part
| ! Lo : : ll: State-of-the-Art and Challenges. IEEE
. L : : Communications Letters, 26(12), pp.2821-
= 1 I 1 : ! 1 }
o =~ | o GNSS | ; 2825.
A B R | |
Rural outdoorsil I i : E
R = | |
! : : : b : :
Urban outdoors i L 5G 4G |
@  6G ; | g
| i ! UwB ! ! Location
Indoors . ! ! uncertainty
K : | L | | : | >
"1 em 110 cm "1'm 10 m 1100 m

© Henk Wymeersch, 2023 2



How to measure performance?

Positioning/localization: estimate location of a connected device

Accuracy (m): error in location (XY, XYZ) that can be attained in a
statistical sense (e.g., 90% of the time/space, or RMSE).

Resolution: ability to resolve multipath in delay, angle, Doppler, or
position.

Latency (s): time between positioning request and availability of the
position estimate. Includes also the over-the-air-latency.

Update rate (Hz): frequency of the position estimates. Limited by the
latency.
Mobility (m/s): typical speed of objects
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accuracy requirement [m]

Behravan A, Yajnanarayana V, Keskin MF, Chen H, Shrestha D, Abrudan
TE, Svensson T, Schindhelm K, Wolfgang A, Lindberg S, Wymeersch H.
"Positioning and Sensing in 6G: Gaps, Challenges, and
Opportunities,” IEEE Vehicular Technology Magazine, 2023.
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From positioning to radar-like sensing
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Accuracy and Resolution —
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Accuracy and resolution

and detection performance

and data association and ...

synthetic aperture sensing

© Henk Wymeersch, 2023 5



CHALMERS Chalmers University of Technology

Accuracy
e |ocalization / sensing error e =« — @ \ 505
e Accuracy, based on statistics of e ef?f_g :

— 90% (or 99%) percentile of the norm of e
— Root mean squared error (RMSE) v/ E{|le]|*}

e |ower bound on RMSE: Cramér-Rao bound (CRB)
— Unknown k=[n',¢"]"
— Observations Yy = pn.ik(K) + 1p

: : : : ) . 8/«'%,]{: Ha/«l'n,k
— Fisher information matrix (FIM) of k: J(k) = 2/ Ny g; 3?{( P ) Ire }

— CRB of parameters of interest 1 (under certain conditions)
VE{In =A%} > \/tracelT=1 (%)) 1.4, 1.4,
— Position error bound (PEB) is the CRB of the location
— Useful as lower bound for estimators and to design systems (BS placement, waveform)

e Accuracy is only meaningful when objects can be resolved
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Resolution
ooo
ooo
e Example: a0
— Wideband: objects are separated
— Narrowband: objects looks as merged into one fﬁ\ R ol
e Resolution: ability to resolve paths / objects
— Delay / range resolution: |73 — /| > 1/W All dimensions have common form
— Angle resolution: |0 — 0;/| > 2/Nant = Z el 2T A
. n - n .
— Doppler resolution: ‘yl — yl/‘ > 1/(KT5) ;TSIHJQZ
: . . : TV
* Resolution thresholds can be improved with super-resolution (s
methods at high SNR.
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Outline

e Foundations of radio localization and sensing

e Localization in 5G: practice and potentials

* Integrated communication and sensing/localization towards 6G
* Main research questions and challenges
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Signal strength

e Principle ;
— Path loss equation P,.[dBm] = P;[dBm] + K[dB] — 10vlog, -
— Learn parameters from data 0

. . 120 : N —

— Map received power to distance
e Challenges ©  Indoor
. — n_in=3.42, sigma=8.01dB
— Not one-to-one mapping 1007 |+ outdoor l
— Many meters distance uncertainty & || N-Out=2.93, sigma=7.8548
—-n=2

— More common with fingerprinting

Path loss with respect to 1m free space path loss (dB)

10° 10°

Transmitter—receiver Separation Distance (m)
Durgin, Greg, Theodore S. Rappaport, and Hao Xu. "Measurements and

o ) - models for radio path loss and penetration loss in and around homes and
http.//a|r-go.es/technology/ﬂngerprlntlng/ trees at 5.85 GHz." |IEEE Transactions on Communications 46.11 (1998):
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Time

e We consider OFDM pilot transmission

e Transmitted signal over N subcarriers
s =[s0,...,5n_1]"

e Received signal after unknown delay, in receiver frame of reference
Tn = sy exp (—2mn7 /(NTy))

. VeCtOFizer — asOa(r) - 7 = distance/c+ B
[a(7)], = exp (—27nT/(NT5)) é

e Delay relates to time-of-flight and clock bias I_

e Estimation can be based on FFT '

e Resolution depends on bandwidth L
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Angle of arrival (AOA) and angle of departure (AOD)

(N —1)A/2 sin(&f\ \

wavefronts

<+—>
/2
Discrete time observation
r=caa(f)+n

[a(0)]n = exp(—gmnsin(0))
Estimation with, e.g., FFT
Resolution depends on aperture

e AOA Operation: narrowband signal, plane

© Henk Wymeersch, 2023

e AOD Operation: narrowband signal, plane

wavefronts r(t) = aa' (6)s(t) +n(t)

(N —1)\/2 sin(@)/\ \

Y s(t)
Discrete time observation
ry = aaT(Q)st + 1y
Estimation with, e.g., OMP
Resolution depends on aperture

d
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From measurements to positions e .
e &< K
N ' . ,,,¢ ll NNN\ o \“——-
e Delay-based positioning: \ e ‘ 1 N 2T TN
* e \ ’ I ™
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* Angle-based positioning: é AN s’
\
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e Combinations: R

arg min ||y — £(x)?

Ve
\
\
\
Ja
=
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% Typically non-convex
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From pOS|t|On|ﬂg tO Seﬂsing: monostatic radar Carvajal, G., Keskin, F.,, Aydogdu, C. et al (2020). Comparison of
Automotive FMCW and OFDM Radar Under Interference. |IEEE

National Radar Conference - Proceedings, 2020-September.

e Sample signal across time and frequency
Sturm, C. and Wiesbeck, W., 2011. Waveform design and signal

— _ processing aspects for fusion of wireless communications and
"k [nTS] 7 eXp ( jQWnTS O”-) €xXp (j27chV]-€T> T Zk [nTS] radar sensing. Proceedings of the IEEE, 99(7), pp.1236-1259.

e Peaksin 2D FFT provide range/Doppler of targets

50 0
»
£, : _— 20 frequency amplitude
= )
o =
% -40 o T
> ®
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o 2 , — ) T —>
g 4 (TmwS, o \
i A 8 @—0 —
2 ®
2 -100 Chirp generator

-50
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Relative range [m] Ym,n

e Detection of multiple targets (e.g., CFAR)

e Can also be extended to the antenna domain to obtain angles
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Outline

e Foundations of radio localization and sensing

* Localization in 5G: practice and potentials

* Integrated communication and sensing/localization towards 6G
* Main research questions and challenges
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Typical 5G approach: time-difference-of-arrival (TDOA)

Operation
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e [Estimate %Z:dz/c—i—BjLnZ

e Differential measurement y; = 7; — 7Tp,%? > 0 no longer |
depends on bias B Conte £99
. . . East Cowes 3, 8
e Find intersection of several hyperbola 1
Whippingham ' l " f.'
Performance limitation TN\ i
. . . . . . Island Harbour Wootton Br E:w 18 Oak?w‘e’ld
e Main limitation: resolution ( = bandwidth) W{‘ A N
e Also: base station placement, LOS s TS
ps : WWW‘ C rfs - CO m/ © OpenStreetMap contributors, CC-BY-SA

Many enhancements in 3GPP R16, 17, 18

Dwivedi S, Shreevastav R, Munier F, Nygren J, Siomina |, Lyazidi Y, Shrestha D, Lindmark
G, Ernstrom P, Stare E, Razavi SM. “Positioning in 5G networks”, IEEE Communications
Magazine. 2021 Dec 30;59(11):38-44.
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Potentials 1/3: radio SLAM °

e Conventional thinking: multipath is foe
e Insight: With angle measurements at UE and BS: N
— Each multipath component has 3 geometric
unknowns, up to 5 observables
— So multipath can be our friend!

e Outcomes:

— Multipath can be exploited to perform
single-BS UE positioning, synchronization,
and environment mapping = Radio-SLAM

— Even possible without LOS path.

— Synchronization problem solved “by
nature”.

e Validation:

—  https://www.youtube.com/watch?v=wAV0
uMpSDo

— Collaboration with Lund Univ. QAMCOM, '
Ericsson, Veoneer, CEVT

Ge, Y., Kaltiokallio, O., Kim, H., Jiang, F., Talvitie, J., Valkama, M., Svensson, L., Kim, S.
and Wymeersch, H., 2022. A computationally efficient EK-PMBM filter for bistatic mmWave
radio SLAM. IEEE Journal on Selected Areas in Communications, 40(7), pp.2179-2192.

Ge, Y., Khosravi, H., Jiang, F., Chen, H., Lindberg, S., Hammarberg, P., Kim, H.,
Brunnegard, O., Eriksson, O., Olsson, B.E. and Tufvesson, F., 2023. Experimental
Validation of Single BS 5G mmWave Positioning and Mapping for Intelligent Transport.
arXiv preprint arXiv:2303.11995.
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Potentials 2/3: per-user signal optimization

Conventional thinking: PRS combined with directional
beams. Are these optimal? No, since energy is wasted

in certain directions.
Insight:

— Under a priori UE information, much better
signals can be determined (in space, time,
frequency)

— Relation to radar sum- and difference beams, with
power allocation

Outcomes:
— Optimized precoders, combiners can significantly
improve positioning performance.
Validation:
— See D3.3 https://hexa-x.eu/deliverables/
— Collaboration QAMCOM

— Sub-degree accuracy possible using tailored
beams with 10 degrees beamwidth

© Henk Wymeersch, 2023
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BS = Source:

https://www.researchgate.net

110° 90° 70°

10dB

—-10dB

(c) AoA-optimal precoders (Prob-
lem 3). The rank of X is 3.

110°

(b) AoD-optimal precoders (Prob-
lem 2). The rank of X is 2.

N. Garcia, H. Wymeersch, D. Slock, “Optimal Precoders for Tracking the AoD and AoA of a
mmWave Path”, in IEEE Transactions on Signal Processing, 2018.

A. Kakkavas, H. Wymeersch, G. Seco-Granados, M. H. Castafieda Garcia, R. A. Stirling-
Gallacher, and J. A. Nossek, "Power Allocation and Parameter Estimation for Multipath-based
5G Positioning", IEEE Transactions on Wireless Communications, 2021.

Musa Furkan Keskin, Fan Jiang, Florent Munier, Gonzalo Seco-Granados, Henk Wymeersch,
"Optimal Spatial Signal Design for mmWave Positioning under Imperfect Synchronization”,

IEEE Transactions on Vehicular Technology, 2022,
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Potentials 3/3: sensing

e Conventional thinking: full duplex transmission only for
communication gains. Hardware impairments degrade
performance

e Insight:
— At high frequencies, where large bandwidths and large

arrays are available, backscattered signals can reveal range

and angle to targets. Similar to monostatic radar.

— Hardware impairments in monostatic sensing can be
related to targets.

e Qutcome:

— Communication waveform can be optimized (time,
frequency, space) to trade-off communication and radar
performance.

— Impairments such as inter-carrier interference, phase noise
can be exploited in monostatic sensing.

e Validation:

— Ongoing project with Halmstad University, Magna, Volvo

Cars .

AlQ

— Stay tuned ...

© Henk Wymeersch, 2023
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M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited Feedforward Waveform
Design for OFDM Dual-Functional Radar-Communications,” IEEE Transactions on
Signal Processing, vol. 69, pp. 2955-2970, 2021.

Keskin, M.F., Wymeersch, H. and Koivunen, V., 2023. Monostatic sensing with OFDM
under phase noise: From mitigation to exploitation. IEEE Transactions on Signal
Processing.



CHALMERS Chalmers University of Technology

Outline

e Foundations of radio localization and sensing

* |ocalization in 5G: practice and potentials

* Integrated communication and sensing/localization towards 6G
* Main research questions and challenges
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6G from a sensing and localization perspective

‘
1. Variety of carrier frequencies (< 6, 7-10 GHz, 28, 140 GHz) 6 \
2.  lLarge aggregate bandwidths (above 1 GHz) L_' -
3. Large number of antennas (3D orientation estimation) \ 6 D
4. Sidelinks (relative, cooperative positioning) /
5.  Distributed cell-free massive MIMO with phase coherence \ w2 J)
6. Integration of sensing, localization, and communications = M % \\\ = E
7.  Data-driven solutions using Al/ML -6G HGX& 'X (g ._é
8. Shaping the environment with RIS L@CUS M ARIADNF

Sky segment (UAV, LEO) complements terrestrial base stations A

9.
© © - -
Main challenges N B i X ) HEXA-X-| Q

* Hardware impairments, much more severe than for communication NPT e ISLANDS

& PROPAGATION ENVIRONMENTS

e Extreme performance requires extreme calibration
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Integration of communication and sensing — ISAC, JCAS, DFRC,...

Figure credit: Ericsson

Reuse of sites Reuse of Reuse of Reuse of Reuse of time

for spectrum for infrastructure for waveform for and frequency

communication communication communication communication resources for

and sensing and sensing and sensing and sensing communication
nd sensing

||‘||| [ (-‘é’) VAR

Where industry sees the potential

99% of academic
research

Henk Wymeersch, Athanasios Stavridis (EAB), Kim

Dedicated positioning/sensing anchors (location reference)? g_chindPmeeI;nb, HuiJChe,l\;i_ao c?ul\j MusaRFurkanl\lje;km, .
. . imon Lindberg, Josel Miguel Mateos-Ramos, Mohamma
Hardware—frlendly sensing waveform (e.g., FMCW: DFTS'OFDM) ? Hossein Moghaddam, Mohammad Ali Nazari, Indika Perera,
Dedicated senging, pogitioning pi|ot5? Alejandro Ramirez, Rafaela Schroeder, Tommy Svensson,
Trad ff b . d . . o Andreas Wolfgang, Vijaya Yajnanarayana, “Final models and
rage-ofr or synergy petween sensing and communications: measurements for localisation and sensing,” Hexa-X project

Deliverable D3.3, 2023. [Online].

Harmonious operation in FR1, FR2, FR3?
Available: https://hexa-x.eu/deliverables

Applications: radar-like and non-radar like sensing, improving communication

© Henk Wymeersch, 2023 23
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6G from a sensing and localization perspective

1. Variety of carrier frequencies (< 6, 7-10 GHz, 28, 140 GHz) 6 G

2.  lLarge aggregate bandwidths (above 1 GHz) -

3. Large number of antennas (3D orientation estimation)

4. Sidelinks (relative, cooperative positioning) /

5. Distributed cell-free massive MIMO with phase coherence )

6. Integration of sensing, localization, and communications _’ b v \\ HS E
7.  Data-driven solutions using Al/ML -6G HGX& X é
8. Shaping the environment with RIS @ M ARIADNF
9 Sky segment (UAV, LEO) complements terrestrial base stations L Cus

| ' e -
Main challenges N x ) HEXA-X-|

TIM:

* Hardware impairments, much more severe than for communication Ly ISLANDS

NNNNNNNNNNNNNNNNNNNNN

e Extreme performance requires extreme calibration
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Will 6G be all about sub-THz? Probably not

® Much hype for 100+ GHz: large bandwidths, excellent delay resolution.
e \What about lower bands?

-

(o) () A SONG oF

R 1 (FR1 R 2 (FR2 :
ange 1 (FR1) (_Range 2 (FR2) Accuracy and Resolution
[ 45 Bands ] 4 Bands ]
Golden
FR1 band Frequency
L
OHz , \ | 100GHz
410 7125 24250 52600
MHz MHz MHz MHz
https://www.mpirical.com/blog/5g-radio-spectrum-and-wrc-19

e Positioning and sensing perspective in lower bands
— Penalty of limited bandwidth?
— How to get resolution?

Ge, Y., Stark, M., Keskin, M.F., Hofmann, F., Hansen, T. and Wymeersch, H.,
2023, March. Analysis of V2X Sidelink Positioning in sub-6 GHz. In 2023 |EEE
3rd International Symposium on Joint Communications & Sensing (JC&S).

© Henk Wymeersch, 2023
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‘
R@SUltS from ray_traC|ng Transmitter Single omnidirectional
antenna
. . . . . . Receiver Single omnidirectional
e Ranging between fixed road-side unit and moving vehicle - J S
10! Carrier 5.9 GHz
frequency
Bandwidth 20 MHz in total, 167
100 subcarriers, 120 kHz subcarrier
. spacin
Multipath pacine
p— penalty : THESEREIN OFDM, 12 symbols with a
g 101F 1l i  — E constant amplitude
— -3¢+ Estimator RMSE Transmitter 10 dBm
power
10-2 F — All-paths REB A A Lk At noise —174 dBm/Hz
- WAA REB , densit
10-3 £ Receiver 8 dB
-7 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 (VB noise figure
1D coordinate of vehicle [m] Nuggﬁr of 1
) _ _ o Number of 1 vehicle, 1 bicycle
* Multipath interference is a limiting factor! users
. RSU location [0 0 10] meter
e Even worse for sensing (clutter). 4 buildings
Sampling 100 ms

time

Speed Vehicle: 4m/s, bicycle:
BOSCH Vi
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Improving resolution at FR17?

=" Machine
- i|learning

Approach 2: super- Approach 3:
resolution phase
processing coherence

© Henk Wymeersch, 2023
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Machine learning: fingerprinting

hd Concept: Approach 2:
. . . super-resolution
—  Channel impulse response (CIR) unique for each location processing

— Changes smoothly over space

- Mapping from CIR to location can be learned (supervised learning)
e  Advantages:

— High resolution, richer channel helps

coherence

— Relatively accurate (~ 1 meter)

— Easy to use (inference) ey e 1 e X L 2

uan, Y., Chen, L., Zhou, X., Liu, Z.,
Liu, X., Guo, G. and Chen, R., 2022.
iPos-5G: Indoor positioning via
commercial 5G NR CSI. /[EEE Internet
of Things Journal, 10(10), pp.8718-

—  Potential to augment model-based methods
e  Drawbacks:

Difficult to train (data collection)

8733.
—  Sensitive to temporal variations o s rmem————
- Non-explainable
—  Resolution not well-understood
0 T T T L—
10 0. N S P T Tkt Lo PR AT TR 2
e ~-=-== WKNN
10-1k ———-=+==DAMUSIC O B RFR
g et = =2 §S TSI T2 = w7 Classic MUSIC SVR 1
= ~=zgZEEREIIEET . ol --=-=-MLPR
s P omesE e —%= ~ DeepMUSIC :
2} 10-2+ "’,,—” ”¢"' Beamformer o DeepFi ]
z ’ = . Bandon PhaseFi
o 2 == ZZB Merkofer, J.P., Revach, G., Shlezinger, N., iPos-5G
"f—’ Routtenberg, T. and van Sloun, R.J., 2023. DA-
10-3} T - 1 MUSIC: Data-driven DoA estimation via deep : -
o - ; : : . augmented MUSIC algorithm. IEEE Transactions on 8 10
2 3 4 5 6 Vehicular Technology.

number of signals d

© Henk Wymeersch, 2023
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Super-resolution processing

* Concept:

Channel parameters span low-dimensional subspace,
dimensionality depends on number of paths

Observation lies in high-dimensional subspace depends on
number of subcarriers, snapshots, antennas

From separating signal and noise subspace, channel parameters
(delays, angles, Dopplers) can be recovered

e Advantages:

Unlimited resolution
Sometimes search-free (ESPRIT)

e Drawbacks:

© Henk Wymeersch, 2023

i G ‘Mach'lne .
. learning

w, | Approach 2: super-
resolution

processing

coherence

~

u, z
N dh. hSNR ]. I T T TTTTIT I [ T TTTTIT | \\\\H‘
ee 19 = = = MF vehicle 220
. . . . . . e s
Still complex for high dimensions (tensor processing) 0.8 || = HRP-SA vehicle L i .
- = = MF bicycle Lol
[ 0.6 || = HRP-SA bicycle - .; f
g
0.4 S il
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Phase coherence

: pﬁécb1:5
e Concept: 2% Machin .
. learning

— Small resources (time, frequency, antennas) can be fused coherently

— Provide larger aperture / aggregate bandwidth RLMRNN G5, 7 ,,
— Realizations: cell-free MIMO, carrier phase positioning, distributed radar 3:
e Advantages: s phase
. . super-resolution co h erence
- Very h|gh reSO|Ut|On processing

e Drawbacks:
— Channel non-stationarity

— Ambiguities
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Outline

e Foundations of radio localization and sensing

e Localization in 5G: practice and potentials

* Integrated communication and sensing/localization towards 6G
* Main research questions and challenges

© Henk Wymeersch, 2023 31
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Conclusions and questions

e 646G will be first generation with localization and sensing built in from the start, but how will
these services be used?

e High frequencies, large bandwidth, many antennas is an interesting regime.

e Lower bands should not be forgotten: high resolution from high SNR, phase coherence, or
machine learning.

* Many challenges to make it work in practice.
* Exciting times:
— ISAC beyond monostatic sensing, synergies and trade-offs.
— RIS can be used to partially replace BSs for enabling localization.

— Hardware limitations and calibration will be important limitation for positioning and
radar.

—  What role will Al, NTN, ... play?

— KVIs (sustainability, trustworthiness, inclusiveness) must be considered in the design.
How?

.
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ttps://www.ericsson.com/en/blog/2020/12/5g-
positioning--what-you-need-to-know

Since 3GPP-R16, several enhancements

DL-PRS resources

e Methods
— UL and DL-TDOA
—  Multi-RTT
- DL-AOD
- UL-AOA
e Signals (broadcast)

— Flexible positioning reference signals

- Long and Short duratlon .BS]_ DBSQ DB83 ¢ = Azimuth angle of departure (AOD)
— Several BSs supported via comb patterns ¥ 8. Zantsh-angle'of dopusture: (ZOD)

’ ’
p, (6 ,d ) are distance and angles of arrival in polar coordinates

— Coherent combining

— Large bandwidth for good delay estimation

— Combined with directional beams

e Qutcomes

— Sub-meter accuracy possible

— Needs dense deployments

— Time synch major bottleneck

— Limited angle resolution, limited knowledge of
beam patterns

Dwivedi S, Shreevastav R, Munier F, Nygren J,
Siomina |, Lyazidi Y, Shrestha D, Lindmark G,
(a) A PRS pattern Ernstrom P, Stare E, Razavi SM. “Positioning in
5G networks”, IEEE Communications
Magazine. 2021 Dec 30;59(11):38-44.

— One PRB ——

— Continuing work, increasingly important
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Further updates in 3GPP

e Release 17

— Enhancements to time and angle measurement (e.g.,

using several adjacent beams)

— Multipath reporting and mitigation

— Latency reduction (scheduling and short
transmissions)

e Release 18, 5G Advanced
Sidelink positioning (RTT-based)
Integrity support

Bandwidth aggregation

Carrier phase positioning
— Low power high accuracy and RedCap positioning

e Also being studied
— Use of AI/ML

— Radar-like sensing
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