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A population of agents who repeatedly interact with one another, and consequently, 

agent states evolve over time

- Epidemic spreading: people interact physically to transmit infectious diseases [1]

- Evolutionary games: individuals engage in strategic interactions (games), e.g. genetic trait 

selection in evolutionary biology, or social dilemmas in human societies [2]

- Networks of populations (meta-populations) can be considered

Population dynamics

[1] L. Zino and M. Cao. Analysis, prediction, and control of epidemics: A survey from scalar to dynamic network models. 

IEEE Circuits and Systems Magazine, 2021.

[2] W. H. Sandholm, Population Games and Evolutionary Dynamics. Cambridge University Press, 2010.
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A population of agents who repeatedly interact with one another, and consequently, 

agent states evolve over time

ሶ𝑥 𝑡 = 𝑓 𝑥(𝑡) ,  𝑥 ∈ ℝ+
𝑛

Typical problems of interest

- Characterising the dynamics of the system as a function of system parameters (epidemic 

transmission rates, payoff functions of a game)

- Number of equilibria (including when equilibria exist)

- Stability of equilibria, including both local and global stability

- Asymptotic behaviour: convergence to equilibrium, limit cycle, chaos, etc.

- Controlling the system and steering 𝑥 𝑡 to a desired point

- Driving an epidemic model to the disease-free equilibrium

- Steering a population game to a specific equilibrium, that might represent a consensus adoption of 

one strategy, e.g. one desirable genetic trait or social behaviour.
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A motivating example: SIS Network Model

[1] A. Lajmanovich and J. A. Yorke. A Deterministic Model for Gonorrhea in a Nonhomogeneous Population. 

Mathematical Biosciences, 28(3-4): pp 221-236, 1976

- Consider 𝑛 ≥ 2 large populations of constant size (birth rate = death rate)

- Each individual has two possible states: Susceptible (S) and Infected (I). 

Individuals recover with no immunity to the disease (e.g. influenza, gonorrhea [1])

Recovery of 

infected individuals

Susceptible individuals

Infected individuals

- 𝑥𝑖 = [0,1] is the proportion of population 𝑖 that is infected

- 𝑑𝑖 > 0 is the recovery rate 

- 𝑏𝑖𝑗 ≥ 0 is infection rate from population 𝑗 individuals to population 𝑖 individual.
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- Define the reproduction number: 𝑅0 = 𝜌 𝐷−1𝐵
where 𝜌(𝐷−1𝐵) denotes the spectral radius of 𝐷−1𝐵.

- 𝑥 = 0𝑛 is the unique equilibrium if and only if 𝑅0 ≤ 1. Then, 𝑥 = 0𝑛

is globally asymptotically stable (and exponentially stable if 𝑅0 < 1)

- If 𝑅0 > 1, then 0𝑛 is unstable. There exists a unique endemic 

equilibrium 𝑥∗ ∈ 0,1 𝑛 that is exponentially stable for all 𝑥 0 ≠ 0𝑛

Assume the network is strongly 

connected (equivalently, 𝐵 is a 

nonnegative irreducible matrix)

Assume that 𝑥 0 ∈ 0, 1 𝑛. 

Then, 𝑥 𝑡 ∈ 0, 1 𝑛 for all 𝑡 ≥ 0.

Convergence and equilibria properties

Linkoping University  18-Sept-2023 6



|

19-9-2023

Simulation Example

Initial condition: 𝑥 0 = 0, 0, 0, 0.5 ⊤

𝑅0 > 1 𝑅0 < 1
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- Increasing recovery rate 𝑑𝑖 → application of medical interventions, e.g. more 

doctors, medicines, anti-viral drugs.

- Decreasing infection rate 𝑏𝑖𝑗 → application of Nonpharmaceutical Interventions 

(NPIs), e.g. masks, mobility restrictions.

Control problem for SIS network model

Basic problem: Assume that 𝑅0 > 1. How can one adjust the values of 

𝑑𝑖 and 𝑏𝑖𝑗 so that, for all 𝑥 0 , we minimise 𝑥𝑖(∞) for all 𝑖 (or some 𝑖)? 

Linkoping University  18-Sept-2023 8
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- Optimisation of network structure: minimise 𝑅0 by

- Removal of nodes/edges, or tuning of 𝑑𝑖 or 𝑏𝑖𝑗, against a fixed resource budget [1,2,3]

- Requires global network information, and is a one-shot method

Control problem for SIS network model

Basic problem: Assume that 𝑅0 > 1. How can one adjust the values of 

𝑑𝑖 and 𝑏𝑖𝑗 so that, for all 𝑥 0 , we minimise 𝑥𝑖(∞) for all 𝑖 (or some 𝑖)? 

[1] V. L. Somers and I. R. Manchester. Sparse Resource Allocation for Control of Spreading Processes via Convex Optimization. IEEE Control 

Systems Letters, 2020

[2] P. Van Mieghem, D. Stevanovic, F. Kuipers, C. Li, R. Van De Bovenkamp, D. Liu, and H. Wang. Decreasing the spectral radius of a graph by 

link removals. Physical Review E, 2011.

[3] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas. Optimal resource allocation for network protection: A geometric 

programming approach. IEEE Transactions on Control of Network Systems, 2014.
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- Decentralised control: each node 𝑖 uses 𝑥𝑖(𝑡) to implement feedback control [1,2,3]

- Does not require knowledge of node parameters 𝑑𝑖, 𝑏𝑖𝑗

- Dynamic updating of control input, i.e. “closing the loop”

Control problem for SIS network model

Basic problem: Assume that 𝑅0 > 1. How can one adjust the values of 

𝑑𝑖 and 𝑏𝑖𝑗 so that, for all 𝑥 0 , we minimise 𝑥𝑖(∞) for all 𝑖 (or some 𝑖) 

[1] Y. Wang, S. Gracy, C. A. Uribe, H. Ishii, and K. H. Johansson. A State Feedback Controller for Mitigation of Continuous-Time Networked 

SIS Epidemics, 2022

[2] J. Liu, P. E. Pare, A. Nedic, C. Y. Tang, C. L. Beck, and T. Basar. Analysis and control of a continuous-time bi-virus model. IEEE 

Transactions on Automatic Control, 2019.

[3] M. Ye, J. Liu, B. D. O. Anderson, and M. Cao. Applications of the Poincare–Hopf Theorem: Epidemic Models and Lotka–Volterra Systems. 

IEEE Transactions on Automatic Control, 2022.

Linkoping University  18-Sept-2023 10



|

19-9-2023

A class of decentralised feedback controllers

Consider a class of feedback controllers of the form

𝑢 𝑥𝑖(𝑡) = 𝑑𝑖 + ℎ𝑖(𝑥𝑖(𝑡))  

- 𝑑𝑖 > 0 is the base recovery rate of population 𝑖

- ℎ𝑖 𝑥𝑖 : 0,1 → ℝ≥0 is smooth, monotonically nondecreasing and satisfies ℎ𝑖 0 = 0

- E.g. ℎ𝑖 𝑥𝑖 = 𝑘𝑖𝑥𝑖 for some control gain 𝑘𝑖 > 0
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12

Cutting a long-story short…

Uncontrolled network 𝑅0 > 1 Controlled network, ℎ1 = 0.5𝑥1
0.5, ℎ2 = 0.9𝑥2

𝑥∗

ҧ𝑥∗

Impossibility result: The decentralised controllers cannot eradicate the disease 

if the disease is endemic in the uncontrolled network! 
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Reflections

𝑢 𝑥𝑖(𝑡) = 𝑑𝑖 + ℎ𝑖(𝑥𝑖(𝑡))  

- ℎ𝑖 𝑥𝑖 : 0,1 → ℝ≥0 is smooth, monotonically nondecreasing and satisfies ℎ𝑖 0 = 0

- E.g. ℎ𝑖 𝑥𝑖 = 𝑘𝑖𝑥𝑖 for some control gain 𝑘𝑖 > 0

- Proof of impossibility result

- Poincare-Hopf Theorem to establish existence of endemic equilibrium for controlled system

- Monotone dynamical systems theory to establish global exponential convergence

- Can we design a more creative control algorithm to eliminate the disease?
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[1] L. Walsh, M. Ye, B. D.O. Anderson, and Z. Sun. Decentralised adaptive-gain control for eliminating epidemic spreading 

on networks. Submitted journal paper. ArXiv: https://arxiv.org/abs/2305.16658

[2] L. Walsh, M. Ye, B. D.O. Anderson, and Z. Sun. Decentralised adaptive-gain control for the Susceptible--Infected--

Susceptible network epidemic model. 22nd IFAC World Congress, Yokohama, Japan, 2023
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Decentralised adaptive-gain control (infection rate)

ሶ𝑥𝑖 𝑡 = −𝑑𝑖𝑥𝑖 𝑡 + 1 − 𝑥𝑖 𝑡 𝑔𝑖(𝑡) ෍
𝑗∈𝑁𝑖

𝑏𝑖𝑗 𝑥𝑗(𝑡)

ሶ𝑔𝑖 𝑡 = −𝜙𝑖 𝑥𝑖 𝑡 𝑔𝑖 𝑡 ,  𝑔𝑖 0 = 1

- 𝜙𝑖 𝑥𝑖 =  𝛼𝑖𝑥𝑖
𝑝

is the adaptation function, 

where 𝑝 ∈ ℕ+ is common to all nodes and 

𝛼𝑖 > 0 is a tuning parameter

- 𝑔𝑖 𝑡 ∈ [0,1] for all 𝑡, i.e. well-defined 

- Gain 𝑔𝑖(𝑡) represents NPIs that reduces 

mobility (and hence infection rate) to 

entirety of population 𝑖
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Network dynamics

ሶ𝑥(𝑡)
ሶ𝑔(𝑡)

=
−𝐷 + 𝐼𝑛 − 𝑋 𝑡 𝐺(𝑡)𝐵

𝐴𝑋 𝑡 𝑝

𝑥(𝑡)
𝑔(𝑡)

- 𝑥 = 𝑥1, … , 𝑥𝑛
⊤, 𝑔 = [𝑔1, … , 𝑔𝑛(𝑡)], 𝐷 = diag(𝑑𝑖) and 

𝑋 𝑡 = diag(𝑥𝑖(𝑡)), 𝐺 = diag(𝑔𝑖(𝑡)), 𝐴 = diag(𝛼𝑖) and 𝐵 = {𝑏𝑖𝑗}

- Intuitively, with 𝑔𝑖(𝑡) monotonically decreasing, we can easily prove 𝑥𝑖 → 0 as 𝑡 → ∞ 

- Main challenge: prove that lim
𝑡→∞

 𝑔𝑖 𝑡 = ҧ𝑔𝑖 > 0 for all 𝑖, i.e. we avoid having to totally 

lock down any one population

- It is easy to prove there exists 𝑖 such that ҧ𝑔𝑖 > 0
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Main result for infection rate control

ሶ𝑥(𝑡)
ሶ𝑔(𝑡)

=
−𝐷 + 𝐼𝑛 − 𝑋 𝑡 𝐺(𝑡)𝐵

𝐴𝑋 𝑡 𝑝

𝑥(𝑡)
𝑔(𝑡)

- Brief sketch of proof:

𝑔𝑖 𝑡 = 𝑔𝑖 0 𝑒− 0׬
𝑡

𝜙𝑖 𝑥𝑖 𝑠 𝑑𝑠

- Assume some gains 𝑔𝑖 𝑡 → ҧ𝑔𝑖 > 0  while other gains 𝑔𝑗 𝑡 → 0

- For the 𝑔𝑖 𝑡 → ҧ𝑔𝑖, standard application of Barbalat’s lemma establishes 𝑥𝑖(𝑡) → 0

- For the 𝑔𝑗 𝑡 → 0, we show by contradiction that no such 𝑗 can exist

- Two key tools: 𝐿𝑝 function spaces, and vector differential inequalities [1], the latter being 

applicable for monotone systems

Theorem: Consider the system above, with 𝐵 irreducible, 𝐴 and 𝐷 positive diagonal, 

and 𝜌 𝐷−1𝐵 > 1. Then for all 𝑥 0 ∈ 0,1 𝑛 there holds

- lim
𝑡→∞

𝑥 𝑡 = 𝟎𝑛 and lim
𝑡→∞

𝑔 𝑡 = ҧ𝑔 > 𝟎𝑛

[1] W. Walter, “Ordinary Differential Inequalities in Ordered Banach Spaces,” Journal of Differential Equations, 1971.
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Performance analysis

To help us examine the performance, let us define the controlled reproduction 

number 𝑅𝑡 = 𝜌(𝐷−1𝐺 𝑡 𝐵)

- Simulations suggest when 𝑝 ≥ 2, convergence can be (but is not always) as slow as  
1

𝑡
 

- Another auxiliary result:  lim
𝑡→∞

𝑔𝑖 𝑡 ≤ 𝑒
−

𝛼𝑖𝑥
𝑖
𝑝

(0)

𝑝𝑑𝑖

Proposition: 

- 𝑅𝑡 is monotonically decreasing in 𝑡, and lim
𝑡→∞

𝑅𝑡 = 𝑅∞ ≤ 1.

- If 𝑝 = 1, then 𝑅∞ < 1 and convergence is exponentially fast.

Recall:

ሶ𝑔𝑖 𝑡 = −𝛼𝑖𝑥𝑖
𝑝

(𝑡)𝑔𝑖 𝑡
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Simulation example

A real-world network structure capturing people mobility patterns between 107 Italian provinces

Uncontrolled network 𝑅0 > 1
Controller ሶ𝑔𝑖 = 𝛼𝑖𝑥𝑖
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Partial network control (infection rate)

Previously we assumed every node executed its adaptive controller in a decentralised 

manner

ሶ𝑥𝑖 𝑡 = −𝑑𝑖𝑥𝑖 𝑡 + 1 − 𝑥𝑖 𝑡 𝑔𝑖(𝑡) ෍
𝑗∈𝑁𝑖

𝑏𝑖𝑗 𝑥𝑗(𝑡)

ሶ𝑔𝑖 𝑡 = −𝜙𝑖 𝑥𝑖 𝑡 𝑔𝑖(𝑡),  𝑔𝑖 0 = 1,  𝜙𝑖 = 𝛼𝑖𝑥𝑖
𝑝

A natural follow up question is: can we achieve the same (or similar) results by 

controlling a subset of the nodes?
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Partial network control

We define 𝐶 = 𝑖 ∈ 1,2, … , 𝑛  𝛼𝑖 > 0} and 𝑈 = 𝑖 ∈ 1,2, … , 𝑛  𝛼𝑖 = 0} as the set of 

controlled and uncontrolled nodes

ሶ𝑥𝑖 𝑡 = −𝑑𝑖𝑥𝑖 𝑡 + 1 − 𝑥𝑖 𝑡 𝑔𝑖(𝑡) ෍
𝑗∈𝑁𝑖

𝑏𝑖𝑗 𝑥𝑗(𝑡)

ሶ𝑔𝑖 𝑡 = −𝜙𝑖 𝑥𝑖 𝑡 𝑔𝑖 𝑡 ,  𝑔𝑖 0 = 1,  𝜙𝑖 = 𝛼𝑖𝑥𝑖
𝑝

Key problems to consider when given 𝐷 = diag(𝑑𝑖) and 𝐵 = {𝑏𝑖𝑗}

- Does there exist a pair (𝐶, 𝑈), with 𝐶 ∪ 𝑈 = {1,2, … , 𝑛}
such that 𝑥𝑖 𝑡 → 0 for all 𝑖 and 𝑔𝑘 𝑡 → ҧ𝑔𝑘 > 0 for all 𝑘 ∈ 𝐶?

- If one or more pairs (𝐶, 𝑈) exist, can we propose an 

iterative algorithm that selects a suitable pair (𝐶, 𝑈)
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Existence of a pair (𝐶, 𝑈)

Without loss of generality, let 𝑈 = {1,2, … , 𝑘} and 𝐶 = {𝑘 + 1, 𝑘 + 2, … 𝑛} as the set of 

uncontrolled and controlled nodes (we can always reorder the nodes)

Partition 𝐷 and 𝐵 as

- Proof employs heavy use of M-matrices, which are a special class of matrices often 

appearing in network systems (Laplacian matrix is an M-matrix), along with Centre 

Manifold Theory, and (again) differential inequalities

Theorem: The following two statements are equivalent

- For all 𝑥 0 ∈ 0,1 𝑛 there holds lim
𝑡→∞

𝑥 𝑡 = 𝟎𝑛 and lim
𝑡→∞

𝑔𝑖 𝑡 = ҧ𝑔𝑖 > 0 for all 𝑖 ∈ 𝐶

- The matrix −𝐷1 + 𝐵11 is Hurwitz, or 𝜌 𝐷1
−1𝐵11 < 1
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Existence of a pair (𝐶, 𝑈)

Partition 𝐷 and 𝐵 as

- Existence of a pair 𝐶, 𝑈 is thus equivalent to existence of a reordering of nodes such 

that −𝐷1 + 𝐵11 is Hurwitz

- Intuitively: the uncontrolled subnetwork must be able to eradicate the disease itself

- Any node 𝑖 such that 𝑑𝑖 ≤ 𝑏𝑖𝑖 must belong in 𝐶

Theorem: The following two statements are equivalent

- For all 𝑥 0 ∈ 0,1 𝑛 there holds lim
𝑡→∞

𝑥 𝑡 = 𝟎𝑛 and lim
𝑡→∞

𝑔𝑖 𝑡 = ҧ𝑔𝑖 > 0 for all 𝑖 ∈ 𝐶

- The matrix −𝐷1 + 𝐵11 is Hurwitz, or 𝜌 𝐷1
−1𝐵11 < 1
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Iterative algorithm for finding (𝐶, 𝑈)

- Our iterative algorithm relies heavily on the result of Duan et al. 2022 [1], including 

the idea of a “sum-cycle gain”

- It requires identifying all simple cycles in a network (computationally intensive)

1. Begin by assuming all nodes are uncontrolled 

2. Place all nodes with 𝑑𝑖 ≤ 𝑏𝑖𝑖 into the control set 𝐶

3. In the graph of 𝑈, iterate as follows

- Select one cycle in 𝑈, and place one of its 

nodes into 𝐶

- Check the “sum-cycle gain condition”

Key result: Algorithm always terminates 

with 𝐶 and 𝑈 both non-empty, assuming 

the existence condition was met

[1] X. Duan, S. Jafarpour, and F. Bullo, “Graph-theoretic stability conditions for Metzler matrices and monotone systems,” 

SIAM Journal on Control and Optimization, 2021.
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Iterative algorithm for finding (𝐶, 𝑈)

1. Begin by assuming all nodes are uncontrolled

2. Place all nodes with 𝑑𝑖 ≤ 𝑏𝑖𝑖 into the control set 𝐶

3. In the graph of 𝑈, iterate as follows

- Select one cycle in 𝑈, and place one of its 

nodes into 𝐶

- Check the “sum-cycle gain condition”
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Control of recovery rates

We focused on controlling the infection rate (e.g. via NPIs)

ሶ𝑥𝑖 𝑡 = −𝑑𝑖𝑥𝑖 𝑡 + 1 − 𝑥𝑖 𝑡 𝑔𝑖(𝑡) ෍
𝑗∈𝑁𝑖

𝑏𝑖𝑗 𝑥𝑗(𝑡)

ሶ𝑔𝑖 𝑡 = −𝜙𝑖 𝑥𝑖 𝑡 𝑔𝑖 𝑡 ,  𝑔𝑖 0 = 1

But we can easily consider control of recovery rates (medical interventions)

ሶ𝑥𝑖 𝑡 = −𝑑𝑖𝑔𝑖(𝑡)𝑥𝑖 𝑡 + 1 − 𝑥𝑖 𝑡 ෍
𝑗∈𝑁𝑖

𝑏𝑖𝑗 𝑥𝑗(𝑡)

ሶ𝑔𝑖 𝑡 = 𝜙𝑖 𝑥𝑖 𝑡 ,  𝑔𝑖 0 = 1

𝜙𝑖 = 𝛼𝑖𝑥𝑖
𝑝

Mutatis mutandis, all results presented earlier are the same
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- Proposed a decentralised adaptive-gain control algorithm for each node in an SIS network 

model, for both control of infection rate and recovery rate

- Theoretical results establish that the controller can drive the infections at every node to zero, 

while the gains converge to positive values

- Exponential convergence for a subset of the control parameters, and what appears to be 1/𝑡
convergence rate for another subset

- Considered the situation where only a subset of the nodes can be controlled

- Established a necessary and sufficient condition for existence of such a subset

- Proposed an iterative algorithm to select a suitable control node set

- Key tools used: 𝐿𝑝 stability, M-matrix theory, vector differential inequalities

Conclusions
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- Improved computational efficiency of the iterative selection algorithm

- Consider a mixture of recovery and infection rate control in the same network

- Consider adaptive edge-based control, so that each node controls incoming edges 

independently

- More sophisticated gain design so that 𝑔𝑖(𝑡) is not monotonic

- More realistic implementation by updating 𝑔𝑖(𝑡) in a piece-wise manner

- More reflective of phased introduction of interventions in the real world

- Periodic updating of 𝑔𝑖(𝑡)

- Event-triggered updating, with intelligent selection of triggering function to balance 

frequency of update and timely removal of disease

Current and future work
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Mengbin.ye@curtin.edu.au

https://mengbinye.wordpress.com
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[1] L. Zino, M. Ye, A. Rizzo, G. C. Calafiore. On Adaptive-Gain Control of Replicator Dynamics in Population Games. To 

appear in IEEE Conference on Decision and Control, Singapore, 2023. ArXiv: https://arxiv.org/abs/2306.14469
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Evolutionary game theory

[1] W. H. Sandholm, Population Games and Evolutionary Dynamics. Cambridge University Press, 2010.

- Population of individuals repeatedly engaging in strategic interactions with associated payoffs [1]

- Models a diverse range of decision-making and evolutionary processes

- Objective: steer the population towards a desired state, e.g. consensus adoption of sustainable 

practices
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- Two players play against each other, choose between two mutually exclusive actions: 1 and 2

- Player 𝑖, playing against player 𝑗, receives a payoff determined by payoff matrix 𝑨:

- Three classes of games based on payoff matrix entry values [1]

- Coordination game: 𝑎 > 𝑐 and 𝑑 > 𝑏. Adopting the same strategy (consensus) provides greatest payoff 

(social conventions and norms)

- Anti-coordination game: 𝑐 > 𝑎 and 𝑏 > 𝑑. Adopting opposite strategy (disagreement) provides 

greatest payoff (traffic congestion, queueing)

- Dominant-strategy game: 𝑐 > 𝑎 and 𝑑 > 𝑏 (or 𝑎 > 𝑐 and 𝑏 > 𝑑). One particular strategy provides 

greatest payoff irrespective of opponent choice (Prisoner’s dilemma)

Two-player matrix game

[1] J. Riehl, P. Ramazi, and M. Cao. A survey on the analysis and control of evolutionary matrix games. Annual Reviews in Control, 2028
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Population games and replicator equation

[1] W. H. Sandholm, Population Games and Evolutionary Dynamics. Cambridge University Press, 2010.

- Population of individuals where each individual plays two-player game against all 

others, and individuals revise their strategy using the replicator equation [1] 

- Let 𝑥 𝑡 ∈ [0,1] denote the fraction of the population adopting action 1. Then:

ሶ𝑥 𝑡 = 𝑥(1 − 𝑥)( 𝑎 + 𝑑 − 𝑏 − 𝑐 𝑥 + 𝑏 − 𝑑) 

- Equilibria properties:

- 𝑥 = 0 and 𝑥 = 1 are both equilibria (pure strategy NE), also called consensus states

- 𝑥∗ =
𝑑−𝑏

𝑎+𝑑−𝑏−𝑐
 is an equilibrium for coordination/anti-coordination game (mixed strategy NE)
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Asymptotic replicator dynamics

[1] W. H. Sandholm, Population Games and Evolutionary Dynamics. Cambridge University Press, 2010.

- Let 𝑥 𝑡 ∈ [0,1] denote the fraction of the population adopting action 1. Then:

ሶ𝑥 𝑡 = 𝑥(𝑡)(1 − 𝑥(𝑡))( 𝑎 + 𝑑 − 𝑏 − 𝑐 𝑥(𝑡) + 𝑏 − 𝑑) 

Theorem: Consider the replicator dynamics above. Then, the following hold:

- For a coordination game, 𝑥 𝑡 → 0 if 𝑥 0 < 𝑥∗ and 𝑥 𝑡 → 1 if 𝑥 0 > 𝑥∗

- For an anti-coordination game, 𝑥 𝑡 → 𝑥∗ for all 𝑥 0 ∈ 0,1
- For a dominant-strategy game with 𝑐 > 𝑎 and 𝑑 > 𝑏, 𝑥 𝑡 → 0 for all 𝑥 0 < 1
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Controlling the replicator dynamics

ሶ𝑥 𝑡 = 𝑥(𝑡)(1 − 𝑥(𝑡))( 𝑎 + 𝑑 − 𝑏 − 𝑐 𝑥(𝑡) + 𝑏 − 𝑑)

- We wish to steer the replicator dynamics to a desired equilibrium ҧ𝑥 (setpoint regulation)

- Promote cooperation in social dilemmas, adoption of sustainable innovations, etc.

- Existing methods

- Directly control the actions of some individuals (not always feasible) [1,2]

- Open-loop control with permanent instantaneous change to payoff matrix (requires knowledge 

of game and unnecessarily costly in the long-term) [3]

- Adaptive-gain approach: closed-loop control with limited information on the game 

[1] M. Ye, L. Zino, Ž. Mlakar, J. W. Bolderdijk, H. Risselada, B. M. Fennis, and M. Cao. Collective patterns of social diffusion are shaped by 

individual inertia and trend-seeking. Nature Communications, 2021.

[2] D. Centola, J. Becker, D. Brackbill, and A. Baronchelli, “Experimental evidence for tipping points in social convention,” Science, 2018.

[3] J. Riehl, P. Ramazi, and M. Cao, “Incentive-Based Control of Asynchronous Best-Response Dynamics on Binary Decision Networks,”

IEEE Transactions on Control of Networked Systems, 2018.
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Problem formulation

- Objective: steer the replicator dynamics to a desired equilibrium ҧ𝑥 (setpoint regulation)

- Gain adaptively changes via adaptation function 𝜙 𝑥 ∶ 0,1 → ℝ via ሶ𝑔 𝑡 = 𝜙 𝑥 𝑔(𝑡)

- Design a pair (𝐺, 𝜙) such that i) 𝑥 𝑡 → ҧ𝑥 for all 𝑥 0 ∈ (0,1), and ii) 𝑔 𝑡 → ҧ𝑔 

- Problem 1: ҧ𝑥 is a locally (but not globally) stable equilibrium (coordination games)

- Problem 2: ҧ𝑥 is an unstable consensus equilibrium (anti-coordination or 

dominant-strategy)

- Problem 3: ҧ𝑥 is an arbitrary point, and not an equilibrium of any game
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Problem formulation

- Gain adaptively changes via adaptation function 𝜙 𝑥 ∶ 0,1 → ℝ via ሶ𝑔 𝑡 = 𝜙 𝑥 𝑔(𝑡)

- Design a pair (𝐺, 𝜙) such that i) 𝑥 𝑡 → ҧ𝑥 for all 𝑥 0 ∈ (0,1), and ii) 𝑔 𝑡 → ҧ𝑔 

- Problem 1: ҧ𝑥 is a locally (but not globally) stable equilibrium (coordination games)

- Two locally stable equilibria 𝑥 = 0 and 𝑥 = 1, and a saddle point 𝑥∗ =
𝑑−𝑏

𝑎+𝑑−𝑏−𝑐
∈ (0,1) 

splitting the basins of attraction

- Without loss of generality, set ҧ𝑥 = 0, i.e. we want to reach a consensus on action 2

- Controller needs to drive 𝑥 𝑡 → 0 for all 𝑥 0 ∈ [𝑥∗, 1)
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Problem 1: Innovation gain

- 𝐺21 = 1, 𝐺11 = 𝐺12 = 𝐺22 = 0

ሶ𝑥 𝑡 = 𝑥 1 − 𝑥 𝑎 + 𝑑 − 𝑏 − 𝑐 𝑥 + 𝑏 − 𝑑 + 𝑔𝑥

ሶ𝑔 = 𝜙 𝑥 𝑔,  𝑔 0 > 0

Theorem: The innovation gain controller solves Problem 1 if:

- 𝜙 𝑥 < 0 for 𝑥 ∈ [0, 𝛿] where 𝛿 is such that 𝑥 ∈ [0, 𝛿] is in the basin of 

attraction of 𝑥 = 0;

- 𝜙 𝑥 > 0 for 𝑥 ∈ 𝛿, 1 .

- Key takeaway: we need only an estimate of the basin of attraction of 𝑥 = 0, and we 

only need to increase interventions when outside this estimated basin of attraction

- Example function: 𝜙 𝑥 = 𝑘(𝑥 − ℎ) where ℎ = 𝛿, and 𝑘 is a tuning parameter
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Problem 1: Coordination gain

- 𝐺22 = 1, 𝐺11 = 𝐺12 = 𝐺21 = 0

ሶ𝑥 𝑡 = 𝑥 1 − 𝑥 𝑎 + 𝑑 − 𝑏 − 𝑐 𝑥 + 𝑏 − 𝑑 − 𝑔(1 − 𝑥)

ሶ𝑔 = 𝜙 𝑥 𝑔,  𝑔 0 > 0

Theorem: The coordination gain controller solves Problem 1 if:

- 𝜙 𝑥 < 0 for 𝑥 ∈ 0, 𝛿 where 𝛿 > 0 is such that 𝑥 ∈ [0, 𝛿] is in the basin of 

attraction of 𝑥 = 0;

- 𝜙 𝑥 > 0 for 𝑥 ∈ (𝛿, 1];
- 𝜙 𝑥 > 𝑎 − 𝑐 for all 𝑥 ∈ [1 − 𝜖, 1], for some 𝜖 > 0

- Sketch of proof: when 𝑔(𝑡) is sufficiently large, 𝑥 = 1 is a repeller. The third condition 

ensures 𝑔(𝑡) grows fast enough as 𝑥 𝑡  approaches 1, so that it can never reach 1
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Simulation example

- Left: innovation gain controller; Right: coordination gain controller

- Coordination gain can provide faster convergence, but higher peak gain and requires 

more information
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Problems 2 and 3

Problem 2: ҧ𝑥 is an unstable consensus equilibrium (anti-coordination or 

dominant-strategy)

Problem 3: ҧ𝑥 is an arbitrary point, and not an equilibrium of any game

Can be dealt with using similar adaptive controllers. Some key findings:

- It is impossible to solve Problem 2 using the innovation gain approach.

- Using coordination gain approach solves Problem 2, with very mild and general 

conditions on 𝜙. However, 𝑔(𝑡) is monotonically increasing, and 𝑔 𝑡 → ҧ𝑔 < ∞

- The innovation gain approach solves Problem 3, but the form of 𝜙 is much more 

restrictive
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- Formulated three setpoint regulation problems for the replicator dynamics using adaptive-gain 

control

- For Problem 1, both innovation gain and coordination gain solves the problem, with intuitive 

tradeoffs between the two approaches

- Problems 2 and 3 can be similarly solved

- The adaptive-gain controllers require little information about the gain (only estimates are 

needed, and these can be as conservative as one wishes) 

Conclusions
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- Control of networked population games (similar to the SIS network model)

- Optimised design of 𝜙 that balances: minimisation of peak gain value, maximization of 

convergence speed, and minimisation of total control effort ׬ 𝑔 𝑠 . 𝑑𝑠

- More sophisticated gain design so that 𝑔(𝑡) is not monotonic for Problem 2

- More realistic implementation by updating 𝑔(𝑡) in a piece-wise manner

- More reflective of phased introduction of interventions in the real world

- Periodic updating of 𝑔(𝑡)

- Event-triggered updating, with intelligent selection of triggering function to balance 

frequency of update and timely removal of disease

Current and future work
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