

FACULTY OF SCIENCE AND ENGINEERING

Adaptive-gain control for population dynamics: epidemic networks and evolutionary games

Mengbin (Ben) Ye

Western Australian Premier's Early to Mid-Career Fellow Curtin Centre for Optimisation and Decision Science

- Introduction
 - Population dynamics
 - Background on SIS network model
- Controlling epidemic spreading on a network
 - Full network control
 - Partial network control
- Conclusions and future work

Population dynamics

A population of agents who repeatedly interact with one another, and consequently, agent states evolve over time

- Epidemic spreading: people interact physically to transmit infectious diseases [1]
- **Evolutionary games:** individuals engage in strategic interactions (games), e.g. genetic trait selection in evolutionary biology, or social dilemmas in human societies [2]
- Networks of populations (meta-populations) can be considered

[1] L. Zino and M. Cao. Analysis, prediction, and control of epidemics: A survey from scalar to dynamic network models. *IEEE Circuits and Systems Magazine*, 2021.

[2] W. H. Sandholm, *Population Games and Evolutionary Dynamics*. Cambridge University Press, 2010.

Linkoping University 18-Sept-2023

3

3

A population of agents who repeatedly interact with one another, and consequently, agent states evolve over time

$$\dot{x}(t) = f(x(t)), \qquad x \in \mathbb{R}^n_+$$

Typical problems of interest

- Characterising the dynamics of the system as a function of system parameters (epidemic transmission rates, payoff functions of a game)
 - Number of equilibria (including when equilibria exist)
 - Stability of equilibria, including both local and global stability
 - Asymptotic behaviour: convergence to equilibrium, limit cycle, chaos, etc.
 - Controlling the system and steering x(t) to a desired point
 - Driving an epidemic model to the disease-free equilibrium
 - Steering a population game to a specific equilibrium, that might represent a consensus adoption of one strategy, e.g. one desirable genetic trait or social behaviour.

A motivating example: SIS Network Model

- Consider $n \ge 2$ large populations of constant size (birth rate = death rate)

- Each individual has two possible states: Susceptible (S) and Infected (I). Individuals recover with no immunity to the disease (e.g. influenza, gonorrhea [1])

- $x_i = [0,1]$ is the proportion of population *i* that is infected
- $d_i > 0$ is the recovery rate
- $b_{ij} \ge 0$ is infection rate from population *j* individuals to population *i* individual.

[1] A. Lajmanovich and J. A. Yorke. A Deterministic Model for Gonorrhea in a Nonhomogeneous Population. *Mathematical Biosciences*, **28**(3-4): pp 221-236, 1976

Linkoping University

5

Linkoping University

Convergence and equilibria properties

$$\dot{x}(t) = \begin{bmatrix} -D + (I_n - \operatorname{diag}(x(t))B \end{bmatrix} x(t)$$

$$x = [x_1, x_2, \dots, x_n]^\top \quad D = \operatorname{diag}(d_1, d_2, \dots, d_n), \quad B = \{b_{ij}\}$$

- Define the reproduction number: $R_0 = \rho(D^{-1}B)$ where $\rho(D^{-1}B)$ denotes the spectral radius of $D^{-1}B$.
- $x = 0_n$ is the unique equilibrium if and only if $R_0 \le 1$. Then, $x = 0_n$ is globally asymptotically stable (and exponentially stable if $R_0 < 1$)
- If $R_0 > 1$, then 0_n is unstable. There exists a unique endemic equilibrium $x^* \in (0,1)^n$ that is exponentially stable for all $x(0) \neq 0_n$

Assume the network is strongly

connected (equivalently, B is a

18-Sept-2023

Simulation Example

Initial condition: $x(0) = [0, 0, 0, 0.5]^{T}$

Control problem for SIS network model

$$\dot{x}(t) = \begin{bmatrix} -D + (I_n - \operatorname{diag}(x(t))B \end{bmatrix} x(t)$$
$$x = [x_1, x_2, \dots, x_n]^\top \quad D = \operatorname{diag}(d_1, d_2, \dots, d_n), \quad B = \{b_{ij}\}$$

Basic problem: Assume that $R_0 > 1$. How can one adjust the values of d_i and b_{ij} so that, for all x(0), we minimise $x_i(\infty)$ for all i (or some i)?

- Increasing recovery rate $d_i \rightarrow$ application of medical interventions, e.g. more doctors, medicines, anti-viral drugs.
- Decreasing infection rate $b_{ij} \rightarrow$ application of Nonpharmaceutical Interventions (NPIs), e.g. masks, mobility restrictions.

Control problem for SIS network model

$$\dot{x}(t) = \begin{bmatrix} -D + (I_n - \operatorname{diag}(x(t))B \end{bmatrix} x(t)$$
$$x = [x_1, x_2, \dots, x_n]^\top \quad D = \operatorname{diag}(d_1, d_2, \dots, d_n), \quad B = \{b_{ij}\}$$

Basic problem: Assume that $R_0 > 1$. How can one adjust the values of d_i and b_{ij} so that, for all x(0), we minimise $x_i(\infty)$ for all i (or some i)?

- Optimisation of network structure: minimise R₀ by
 - Removal of nodes/edges, or tuning of d_i or b_{ij} , against a fixed resource budget [1,2,3]
 - Requires global network information, and is a one-shot method

[1] V. L. Somers and I. R. Manchester. Sparse Resource Allocation for Control of Spreading Processes via Convex Optimization. *IEEE Control Systems Letters*, 2020

[2] P. Van Mieghem, D. Stevanovic, F. Kuipers, C. Li, R. Van De Bovenkamp, D. Liu, and H. Wang. Decreasing the spectral radius of a graph by link removals. *Physical Review E*, 2011.

[3] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. Pappas. Optimal resource allocation for network protection: A geometric programming approach. *IEEE Transactions on Control of Network Systems*, 2014.

Control problem for SIS network model

$$\dot{x}(t) = \begin{bmatrix} -D + (I_n - \operatorname{diag}(x(t))B \end{bmatrix} x(t)$$
$$x = [x_1, x_2, \dots, x_n]^\top \quad D = \operatorname{diag}(d_1, d_2, \dots, d_n), \quad B = \{b_{ij}\}$$

Basic problem: Assume that $R_0 > 1$. How can one adjust the values of d_i and b_{ij} so that, for all x(0), we minimise $x_i(\infty)$ for all i (or some i)

- Decentralised control: each node *i* uses $x_i(t)$ to implement feedback control [1,2,3]
 - Does not require knowledge of node parameters d_i , b_{ij}
 - Dynamic updating of control input, i.e. "closing the loop"

[1] Y. Wang, S. Gracy, C. A. Uribe, H. Ishii, and K. H. Johansson. A State Feedback Controller for Mitigation of Continuous-Time Networked SIS Epidemics, 2022

[2] J. Liu, P. E. Pare, A. Nedic, C. Y. Tang, C. L. Beck, and T. Basar. Analysis and control of a continuous-time bi-virus model. *IEEE Transactions on Automatic Control*, 2019.

[3] M. Ye, J. Liu, B. D. O. Anderson, and M. Cao. Applications of the Poincare-Hopf Theorem: Epidemic Models and Lotka-Volterra Systems. *IEEE Transactions on Automatic Control*, 2022.

A class of decentralised feedback controllers

$$\dot{x}_i(t) = -d_i x_i(t) + (1 - x_i(t)) \sum_{j \in \mathcal{N}_i} b_{ij} x_j(t)$$

Consider a class of feedback controllers of the form

 $u(x_i(t)) = d_i + h_i(x_i(t))$

- $d_i > 0$ is the base recovery rate of population i
- $h_i(x_i): [0,1] \to \mathbb{R}_{\geq 0}$ is smooth, monotonically nondecreasing and satisfies $h_i(0) = 0$
- E.g. $h_i(x_i) = k_i x_i$ for some control gain $k_i > 0$

$$\dot{x}_i(t) = -u_i(x_i(t))x_i(t) + (1 - x_i(t))\sum_{j \in \mathcal{N}_i} b_{ij}x_j(t)$$

Cutting a long-story short...

Impossibility result: The decentralised controllers cannot eradicate the disease if the disease is endemic in the uncontrolled network!

Reflections

$u(x_i(t)) = d_i + h_i(x_i(t))$

 $h_i(x_i): [0,1] \to \mathbb{R}_{\geq 0} \text{ is smooth, monotonically nondecreasing and satisfies } h_i(0) = 0$ $\text{E.g. } h_i(x_i) = k_i x_i \text{ for some control gain } k_i > 0$

$$\dot{x}_i(t) = -u_i(x_i(t))x_i(t) + (1 - x_i(t))\sum_{j \in \mathcal{N}_i} b_{ij}x_j(t)$$

- Proof of impossibility result
 - Poincare-Hopf Theorem to establish existence of endemic equilibrium for controlled system
 - Monotone dynamical systems theory to establish global exponential convergence
- Can we design a more creative control algorithm to eliminate the disease?

Introduction

- Epidemic spreading on a network
 - Full network control
 - Partial network control
- Conclusions and future work

[1] L. Walsh, M. Ye, B. D.O. Anderson, and Z. Sun. Decentralised adaptive-gain control for eliminating epidemic spreading on networks. Submitted journal paper. ArXiv: <u>https://arxiv.org/abs/2305.16658</u>
 [2] L. Walsh, M. Ye, B. D.O. Anderson, and Z. Sun. Decentralised adaptive-gain control for the Susceptible--Infected--

Susceptible network epidemic model. 22nd IFAC World Congress, Yokohama, Japan, 2023

Decentralised adaptive-gain control (infection rate)

$$\dot{x}_{i}(t) = -d_{i}x_{i}(t) + (1 - x_{i}(t))g_{i}(t)\sum_{j \in N_{i}} b_{ij}x_{j}(t)$$
$$\dot{g}_{i}(t) = -\phi_{i}(x_{i}(t))g_{i}(t), \qquad g_{i}(0) = 1$$

- $\phi_i(x_i) = \alpha_i x_i^p$ is the adaptation function, where $p \in \mathbb{N}_+$ is common to all nodes and $\alpha_i > 0$ is a tuning parameter
- $g_i(t) \in [0,1]$ for all t, i.e. well-defined
- Gain $g_i(t)$ represents NPIs that reduces mobility (and hence infection rate) to entirety of population i

Network dynamics

$$\begin{bmatrix} \dot{x}(t) \\ \dot{g}(t) \end{bmatrix} = \begin{bmatrix} -D + (I_n - X(t))G(t)B \\ AX(t)^p \end{bmatrix} \begin{bmatrix} x(t) \\ g(t) \end{bmatrix}$$

- $x = [x_1, ..., x_n]^{\top}$, $g = [g_1, ..., g_n(t)]$, $D = \text{diag}(d_i)$ and $X(t) = \text{diag}(x_i(t))$, $G = \text{diag}(g_i(t))$, $A = \text{diag}(\alpha_i)$ and $B = \{b_{ij}\}$

- Main challenge: prove that $\lim_{t\to\infty} g_i(t) = \overline{g}_i > 0$ for all *i*, i.e. we avoid having to totally lock down any one population
- It is easy to prove there exists *i* such that $\bar{g}_i > 0$

 $g_i(t)b_{i3}$

 $g_i(t)b_{i1}$

 $g_i(t)b_{i2}$

Main result for infection rate control

$$\begin{bmatrix} \dot{x}(t) \\ \dot{g}(t) \end{bmatrix} = \begin{bmatrix} -D + (I_n - X(t))G(t)B \\ AX(t)^p \end{bmatrix} \begin{bmatrix} x(t) \\ g(t) \end{bmatrix}$$

Theorem: Consider the system above, with *B* irreducible, *A* and *D* positive diagonal, and $\rho(D^{-1}B) > 1$. Then for all $x(0) \in [0,1]^n$ there holds - $\lim_{t \to \infty} x(t) = \mathbf{0}_n$ and $\lim_{t \to \infty} g(t) = \bar{g} > \mathbf{0}_n$

- Brief sketch of proof:

$$g_i(t) = g_i(0)e^{-\int_0^t \phi_i(x_i(s))ds}$$

- Assume some gains $g_i(t) \rightarrow \bar{g}_i > 0$ while other gains $g_i(t) \rightarrow 0$
- For the $g_i(t) \rightarrow \bar{g}_i$, standard application of Barbalat's lemma establishes $x_i(t) \rightarrow 0$
- For the $g_i(t) \rightarrow 0$, we show by contradiction that no such *j* can exist
- Two key tools: L^p function spaces, and vector differential inequalities [1], the latter being applicable for monotone systems

[1] W. Walter, "Ordinary Differential Inequalities in Ordered Banach Spaces," Journal of Differential Equations, 1971. Linkoping University

Performance analysis

To help us examine the performance, let us define the controlled reproduction number $R_t = \rho(D^{-1}G(t)B)$

Proposition:

- R_t is monotonically decreasing in t, and $\lim_{t\to\infty} R_t = R_\infty \le 1$.
- If p = 1, then $R_{\infty} < 1$ and convergence is exponentially fast.

Recall:
$$\dot{g}_i(t) = -\alpha_i x_i^p(t) g_i(t)$$

- Simulations suggest when $p \ge 2$, convergence can be (but is not always) as slow as $\frac{1}{t}$

- Another auxiliary result: $\lim_{t \to \infty} g_i(t) \le e^{-\frac{\alpha_i x_i^p(0)}{pd_i}}$

Simulation example

A real-world network structure capturing people mobility patterns between 107 Italian provinces

Uncontrolled network $R_0 > 1$ Controller $\dot{g}_i = \alpha_i x_i$

(a) Italy Network

(b) Network dynamics

Linkoping University

Partial network control (infection rate)

Previously we assumed every node executed its adaptive controller in a decentralised manner

$$\dot{x}_{i}(t) = -d_{i}x_{i}(t) + (1 - x_{i}(t))g_{i}(t)\sum_{j \in N_{i}} b_{ij}x_{j}(t)$$
$$\dot{g}_{i}(t) = -\phi_{i}(x_{i}(t))g_{i}(t), \qquad g_{i}(0) = 1, \qquad \phi_{i} = \alpha_{i}x_{i}^{p}$$

A natural follow up question is: can we achieve the same (or similar) results by controlling a subset of the nodes?

Partial network control

We define $C = \{i \in \{1, 2, ..., n\} \mid \alpha_i > 0\}$ and $U = \{i \in \{1, 2, ..., n\} \mid \alpha_i = 0\}$ as the set of controlled and uncontrolled nodes

$$\dot{x}_{i}(t) = -d_{i}x_{i}(t) + (1 - x_{i}(t))g_{i}(t)\sum_{j \in N_{i}} b_{ij}x_{j}(t)$$
$$\dot{g}_{i}(t) = -\phi_{i}(x_{i}(t))g_{i}(t), \qquad g_{i}(0) = 1, \qquad \phi_{i} = \alpha_{i}x_{i}^{p}$$

Key problems to consider when given $D = \text{diag}(d_i)$ and $B = \{b_{ij}\}$

- Does there exist a pair (C, U), with $C \cup U = \{1, 2, ..., n\}$ such that $x_i(t) \to 0$ for all i and $g_k(t) \to \overline{g}_k > 0$ for all $k \in C$?
- If one or more pairs (C, U) exist, can we propose an iterative algorithm that selects a suitable pair (C, U)

Existence of a pair (C, U)

Without loss of generality, let $U = \{1, 2, ..., k\}$ and $C = \{k + 1, k + 2, ..., n\}$ as the set of uncontrolled and controlled nodes (we can always reorder the nodes)

Partition D and B as

$$B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \quad D = \begin{bmatrix} D_1 & \mathbf{0}_{k \times (n-k)} \\ \mathbf{0}_{(n-k) \times k} & D_2 \end{bmatrix}$$

Theorem: The following two statements are equivalent

- For all $x(0) \in [0,1]^n$ there holds $\lim_{t \to \infty} x(t) = \mathbf{0}_n$ and $\lim_{t \to \infty} g_i(t) = \overline{g}_i > 0$ for all $i \in C$ The matrix $-D_1 + B_{11}$ is Hurwitz, or $\rho(D_1^{-1}B_{11}) < 1$
- Proof employs heavy use of M-matrices, which are a special class of matrices often appearing in network systems (Laplacian matrix is an M-matrix), along with Centre Manifold Theory, and (again) differential inequalities

Existence of a pair (C, U)

Partition *D* and *B* as

$$B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \quad D = \begin{bmatrix} D_1 & \mathbf{0}_{k \times (n-k)} \\ \mathbf{0}_{(n-k) \times k} & D_2 \end{bmatrix}$$

Theorem: The following two statements are equivalent

- For all $x(0) \in [0,1]^n$ there holds $\lim_{t \to \infty} x(t) = \mathbf{0}_n$ and $\lim_{t \to \infty} g_i(t) = \overline{g}_i > 0$ for all $i \in C$
- The matrix $-D_1 + B_{11}$ is Hurwitz, or $\rho(D_1^{-1}B_{11}) < 1$
- Existence of a pair (C, U) is thus equivalent to existence of a reordering of nodes such that $-D_1 + B_{11}$ is Hurwitz
- Intuitively: the uncontrolled subnetwork must be able to eradicate the disease itself
- Any node *i* such that $d_i \leq b_{ii}$ must belong in *C*

Iterative algorithm for finding (C, U)

- Our iterative algorithm relies heavily on the result of Duan et al. 2022 [1], including the idea of a "sum-cycle gain"
- It requires identifying all simple cycles in a network (computationally intensive)
- 1. Begin by assuming all nodes are uncontrolled
- 2. Place all nodes with $d_i \leq b_{ii}$ into the control set C
- 3. In the graph of U, iterate as follows
- Select one cycle in U, and place one of its nodes into C
- Check the "sum-cycle gain condition"

Key result: Algorithm always terminates with C and U both non-empty, assuming the existence condition was met

[1] X. Duan, S. Jafarpour, and F. Bullo, "Graph-theoretic stability conditions for Metzler matrices and monotone systems," *SIAM Journal on Control and Optimization*, 2021.

Linkoping University18-Sept-202324

Iterative algorithm for finding (C,U)

- 1. Begin by assuming all nodes are uncontrolled
- 2. Place all nodes with $d_i \leq b_{ii}$ into the control set C
- 3. In the graph of U, iterate as follows
 - Select one cycle in *U*, and place one of its nodes into *C*
 - Check the "sum-cycle gain condition"

 $d_i = 2$ for all nodes $b_{ii} = 1$ for all nodes except $b_{aa} = 4$

Control of recovery rates

We focused on controlling the infection rate (e.g. via NPIs)

$$\begin{split} \dot{x}_{i}(t) &= -d_{i}x_{i}(t) + \left(1 - x_{i}(t)\right)g_{i}(t)\sum_{j \in N_{i}} b_{ij}x_{j}(t) \\ \dot{g}_{i}(t) &= -\phi_{i}(x_{i}(t))g_{i}(t), \qquad g_{i}(0) = 1 \end{split}$$

But we can easily consider control of recovery rates (medical interventions)

$$\dot{x}_i(t) = -d_i g_i(t) x_i(t) + (1 - x_i(t)) \sum_{j \in N_i} b_{ij} x_j(t)$$
$$\dot{g}_i(t) = \phi_i(x_i(t)), \qquad g_i(0) = 1$$
$$\phi_i = \alpha_i x_i^p$$

Mutatis mutandis, all results presented earlier are the same

Conclusions

- Proposed a decentralised adaptive-gain control algorithm for each node in an SIS network model, for both control of infection rate and recovery rate
- Theoretical results establish that the controller can drive the infections at every node to zero, while the gains converge to positive values
- Exponential convergence for a subset of the control parameters, and what appears to be 1/t convergence rate for another subset
- Considered the situation where only a subset of the nodes can be controlled
 - Established a necessary and sufficient condition for existence of such a subset
 - Proposed an iterative algorithm to select a suitable control node set
- Key tools used: L^p stability, M-matrix theory, vector differential inequalities

Current and future work

- Improved computational efficiency of the iterative selection algorithm
- Consider a mixture of recovery and infection rate control in the same network
- Consider adaptive edge-based control, so that each node controls incoming edges independently
- More sophisticated gain design so that $g_i(t)$ is not monotonic
- More realistic implementation by updating $g_i(t)$ in a piece-wise manner
 - More reflective of phased introduction of interventions in the real world
 - Periodic updating of $g_i(t)$
 - Event-triggered updating, with intelligent selection of triggering function to balance frequency of update and timely removal of disease

Thanks! Any Questions?

<u>Mengbin.ye@curtin.edu.au</u> <u>https://mengbinye.wordpress.com</u>

Emeritus Prof. Brian D.O.Anderson, AC Australian National Univ.

Assistant Professor Lorenzo Zino Politecnico di Torino

Dr. Zhiyong Sun TU Eindhoven

Liam Walsh Curtin University

Funding Acknowledgment

Department of Jobs, Tourism, Science and Innovation

Dr Ye is supported by the Western Australian Government through the Premier's Science Fellowship Program

29

Introduction

• Part I: Epidemic spreading on a network

• Part II: Population games

[1] L. Zino, M. Ye, A. Rizzo, G. C. Calafiore. On Adaptive-Gain Control of Replicator Dynamics in Population Games. To appear in *IEEE Conference on Decision and Control*, Singapore, 2023. ArXiv: <u>https://arxiv.org/abs/2306.14469</u>

Evolutionary game theory

-

- Population of individuals repeatedly engaging in strategic interactions with associated payoffs [1]
- Models a diverse range of decision-making and evolutionary processes

Objective: steer the population towards a desired state, e.g. consensus adoption of sustainable practices

[1] W. H. Sandholm, *Population Games and Evolutionary Dynamics*. Cambridge University Press, 2010.

Two-player matrix game

- Two players play against each other, choose between two mutually exclusive actions: 1 and 2
- Player *i*, playing against player *j*, receives a payoff determined by payoff matrix *A*:

$$x_{j} = 1 \quad x_{j} = 2$$

$$x_{i} = 1 \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- Three classes of games based on payoff matrix entry values [1]
 - Coordination game: a > c and d > b. Adopting the same strategy (consensus) provides greatest payoff (social conventions and norms)
 - Anti-coordination game: c > a and b > d. Adopting opposite strategy (disagreement) provides greatest payoff (traffic congestion, queueing)
 - **Dominant-strategy game:** c > a and d > b (or a > c and b > d). One particular strategy provides greatest payoff irrespective of opponent choice (Prisoner's dilemma)

[1] J. Riehl, P. Ramazi, and M. Cao. A survey on the analysis and control of evolutionary matrix games. Annual Reviews in Control, 2028

Population games and replicator equation

- Population of individuals where each individual plays two-player game against all others, and individuals revise their strategy using the replicator equation [1]
- Let $x(t) \in [0,1]$ denote the fraction of the population adopting action 1. Then:

$$\dot{x}(t) = x(1-x)((a+d-b-c)x+b-d)$$

- Equilibria properties:
 - x = 0 and x = 1 are both equilibria (pure strategy NE), also called consensus states $x^* = \frac{d-b}{a+d-b-c} \text{ is an equilibrium for coordination/anti-coordination game (mixed strategy NE)}$

[1] W. H. Sandholm, Population Games and Evolutionary Dynamics. Cambridge University Press, 2010.

Asymptotic replicator dynamics

- Let $x(t) \in [0,1]$ denote the fraction of the population adopting action 1. Then: $\dot{x}(t) = x(t)(1 - x(t))((a + d - b - c)x(t) + b - d)$

Theorem: Consider the replicator dynamics above. Then, the following hold:

- For a coordination game, $x(t) \rightarrow 0$ if $x(0) < x^*$ and $x(t) \rightarrow 1$ if $x(0) > x^*$
- For an anti-coordination game, $x(t) \rightarrow x^*$ for all $x(0) \in (0,1)$
- For a dominant-strategy game with c > a and d > b, $x(t) \rightarrow 0$ for all x(0) < 1

[1] W. H. Sandholm, *Population Games and Evolutionary Dynamics*. Cambridge University Press, 2010. Linkoping University 18-Sept-2023 Controlling the replicator dynamics

$$\dot{x}(t) = x(t)(1 - x(t))((a + d - b - c)x(t) + b - d)$$

- We wish to steer the replicator dynamics to a desired equilibrium \bar{x} (setpoint regulation)
- Promote cooperation in social dilemmas, adoption of sustainable innovations, etc.
- Existing methods
 - Directly control the actions of some individuals (not always feasible) [1,2]
 - Open-loop control with permanent instantaneous change to payoff matrix (requires knowledge of game and unnecessarily costly in the long-term) [3]

- Adaptive-gain approach: closed-loop control with limited information on the game

[1] M. Ye, L. Zino, Ž. Mlakar, J. W. Bolderdijk, H. Risselada, B. M. Fennis, and M. Cao. Collective patterns of social diffusion are shaped by individual inertia and trend-seeking. *Nature Communications*, 2021.
 [2] D. Centola, J. Becker, D. Brackbill, and A. Baronchelli, "Experimental evidence for tipping points in social convention," *Science*, 2018.
 [3] J. Riehl, P. Ramazi, and M. Cao, "Incentive-Based Control of Asynchronous Best-Response Dynamics on Binary Decision Networks," *IEEE Transactions on Control of Networked Systems*, 2018.

35

Problem formulation

- Objective: steer the replicator dynamics to a desired equilibrium \bar{x} (setpoint regulation)

- Gain adaptively changes via adaptation function $\phi(x) : [0,1] \rightarrow \mathbb{R}$ via $\dot{g}(t) = \phi(x)g(t)$
- Design a pair (G, ϕ) such that i) $x(t) \to \overline{x}$ for all $x(0) \in (0,1)$, and ii) $g(t) \to \overline{g}$
- **Problem 1:** \bar{x} is a locally (but not globally) stable equilibrium (coordination games)
- **Problem 2:** \bar{x} is an unstable consensus equilibrium (anti-coordination or dominant-strategy)
- **Problem 3:** \bar{x} is an arbitrary point, and not an equilibrium of any game

Problem formulation

- Gain adaptively changes via adaptation function $\phi(x) : [0,1] \rightarrow \mathbb{R}$ via $\dot{g}(t) = \phi(x)g(t)$
- Design a pair (G, ϕ) such that i) $x(t) \to \overline{x}$ for all $x(0) \in (0,1)$, and ii) $g(t) \to \overline{g}$
- **Problem 1:** \bar{x} is a locally (but not globally) stable equilibrium (coordination games)
 - Two locally stable equilibria x = 0 and x = 1, and a saddle point $x^* = \frac{d-b}{a+d-b-c} \in (0,1)$ splitting the basins of attraction
 - Without loss of generality, set $\bar{x} = 0$, i.e. we want to reach a consensus on action 2
 - Controller needs to drive $x(t) \rightarrow 0$ for all $x(0) \in [x^*, 1)$

Problem 1: Innovation gain

•
$$G_{21} = 1$$
, $G_{11} = G_{12} = G_{22} = 0$

$$\dot{x}(t) = x(1-x)((a+d-b-c)x+b-d+gx) \dot{g} = \phi(x)g, \qquad g(0) > 0$$

Theorem: The innovation gain controller solves Problem 1 if:

- $\phi(x) < 0$ for $x \in [0, \delta]$ where δ is such that $x \in [0, \delta]$ is in the basin of attraction of x = 0;
- $\phi(x) > 0$ for $x \in (\delta, 1]$.
- Key takeaway: we need only an estimate of the basin of attraction of x = 0, and we only need to increase interventions when outside this estimated basin of attraction
- Example function: $\phi(x) = k(x h)$ where $h = \delta$, and k is a tuning parameter

Problem 1: Coordination gain

$$G_{22} = 1, G_{11} = G_{12} = G_{21} = 0$$

$$\dot{x}(t) = x(1-x)\big((a+d-b-c)x+b-d-g(1-x)\big) \dot{g} = \phi(x)g, \qquad g(0) > 0$$

Theorem: The coordination gain controller solves Problem 1 if:

- $\phi(x) < 0$ for $x \in [0, \delta]$ where $\delta > 0$ is such that $x \in [0, \delta]$ is in the basin of attraction of x = 0;
- $\phi(x) > 0$ for $x \in (\delta, 1]$;
- $\phi(x) > a c$ for all $x \in [1 \epsilon, 1]$, for some $\epsilon > 0$
- Sketch of proof: when g(t) is sufficiently large, x = 1 is a repeller. The third condition ensures g(t) grows fast enough as x(t) approaches 1, so that it can never reach 1

Simulation example

- Left: innovation gain controller; Right: coordination gain controller
- Coordination gain can provide faster convergence, but higher peak gain and requires more information

Problems 2 and 3

Problem 2: \bar{x} is an unstable consensus equilibrium (anti-coordination or dominant-strategy)

Problem 3: \bar{x} is an arbitrary point, and not an equilibrium of any game

Can be dealt with using similar adaptive controllers. Some key findings:

- It is impossible to solve Problem 2 using the innovation gain approach.
- Using coordination gain approach solves Problem 2, with very mild and general conditions on ϕ . However, g(t) is monotonically increasing, and $g(t) \rightarrow \overline{g} < \infty$
- The innovation gain approach solves Problem 3, but the form of ϕ is much more restrictive

Conclusions

- Formulated three setpoint regulation problems for the replicator dynamics using adaptive-gain control
- For Problem 1, both innovation gain and coordination gain solves the problem, with intuitive tradeoffs between the two approaches
- Problems 2 and 3 can be similarly solved
- The adaptive-gain controllers require little information about the gain (only estimates are needed, and these can be as conservative as one wishes)

Current and future work

- Control of networked population games (similar to the SIS network model)
- Optimised design of ϕ that balances: minimisation of peak gain value, maximization of convergence speed, and minimisation of total control effort $\int g(s) ds$
- More sophisticated gain design so that g(t) is not monotonic for Problem 2
- More realistic implementation by updating g(t) in a piece-wise manner
 - More reflective of phased introduction of interventions in the real world
 - Periodic updating of g(t)
 - Event-triggered updating, with intelligent selection of triggering function to balance frequency of update and timely removal of disease