Energy-Aware Controllability of Complex Networks

Giacomo Baggio¹, Fabio Pasqualetti², Sandro Zampieri¹

¹University of Padova

²University of California, Riverside

September 22, 2023

Table of Contents

Controllability analysis: Motivations

- 2 Controllability, structural controllability and control energy
- 3 Controllability metrics
- 4 Matrix non-normality
- 5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$
- 6 Examples
- 7 Concluding remarks

Motivations: need of tools for dynamical network analysis

- Static networks: connectivity, centrality, modularity, ...
- Dynamical networks: equilibria, stability, basins of attraction,

Controllability as a natural metrics of the interaction strength in dynamic networks

Questions:

- Is the network controllable?
- How many control nodes?
- How to select control nodes?

Sandro Zampieri (DEI)

Y. Y. Liu, J. J. Slotine, A. L. Barabasi, "Controllability of complex networks," Nature 2011.

Literature

Y. Y. Liu, J. J. Slotine, A. L. Barabasi, "Controllability of complex networks," Nature 2011.

Network science

- J. Sun and A. E. Motter, "Controllability transition and nonlocality in network control," Physical Review Letters, 2013.

- Liu, Yang-Yu, Jean-Jacques Slotine, and Albert-László Barabási. "Observability of complex systems." Proceedings of the National Academy of Sciences 110.7 (2013): 2460-2465.

- Nepusz, Tamás, and Tamás Vicsek. "Controlling edge dynamics in complex networks." Nature Physics 8.7 (2012): 568-573.

- Wang, W. X., Ni, X., Lai, Y. C., Grebogi, C. (2012). Optimizing controllability of complex networks by minimum structural perturbations. Physical Review E, 85(2), 026115.

- Yuan, Z., Zhao, C., Di, Z., Wang, W. X., , Lai, Y. C. (2013). Exact controllability of complex networks. Nature communications, 4.

- Mones, Enys, Lilla Vicsek, and Tamás Vicsek. "Hierarchy measure for complex networks." PloS one 7.3 (2012): e33799.

.....

- Alizadeh, S., Pósfai, M., Ghasemi, A. (2023). Input node placement restricting the longest control chain in controllability of complex networks. Scientific Reports, 13(1), 3752.
- D'Souza, R. M., di Bernardo, M., Liu, Y. Y. (2023). Controlling complex networks with complex nodes. Nature Reviews Physics, 5(4), 250-262.

Literature

Y. Y. Liu, J. J. Slotine, A. L. Barabasi, "Controllability of complex networks," Nature 2011.

Life science

- Branchi, I. (2022). Recentering neuroscience on behavior: the interface between brain and environment is a privileged level of control of neural activity. **Neuroscience , Biobehavioral Reviews**, 138, 104678.

- Esmaeilzadeh, A. A., Kashian, M., Salman, H. M., Alsaffar, M. F., Jaber, M. M., Soltani, S., ... , Kastelic, J. W. (2022). Identify Biomarkers and Design Effective Multi-Target Drugs in Ovarian Cancer: Hit Network-Target Sets Model Optimizing. **Biology**, 11(12), 1851.

- Craske, M. G., Herzallah, M. M., Nusslock, R., Patel, V. (2023). From neural circuits to communities: an integrative multidisciplinary roadmap for global mental health. **Nature Mental Health**, 1(1), 12-24.

- Vilonen, L. L., Hoosein, S., Smith, M. D., Trivedi, P. (2023). Legacy effects of intensified drought on the soil microbiome in a mesic grassland. **Ecosphere**, 14(6), e4545.

- Ginsberg, S. D., Sharma, S., Norton, L., Chiosis, G. (2023). Targeting stressor-induced dysfunctions in protein–protein interaction networks via epichaperomes. **Trends in Pharmacological Sciences**.

- Schmälzle, R., , Huskey, R. (2023). Integrating media content analysis, reception analysis, and media effects studies. Frontiers in Neuroscience, 17, 1155750.

- Zhang, X., Pan, C., Wei, X., Yu, M., Liu, S., An, J., ..., Zhang, W. (2023). Cancer-keeper genes as therapeutic targets. Iscience, 26(8).

Table of Contents

2 Controllability, structural controllability and control energy

- 3 Controllability metrics
- 4 Matrix non-normality
- 5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$
- 6 Examples
- 7 Concluding remarks

Controllability

n states system with dynamics

 $\dot{x}_i(t) = \sum_j A_{ij} x_j(t) + u_i(t)$ controlled node $\dot{x}_i(t) = \sum_j A_{ij} x_j(t)$ uncontrolled node

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Controllability

$$\dot{x}(t) = Ax(t) + Bu(t)$$

 $\mbox{Controllability}:$ We can reach any final state by acting on the input signal u(t)

$$x_{init} = 0$$

Popular approach: Structural Controllability

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Only zero/nonzero pattern of A is imposed.

Structural controllability: Given a non-zero pattern of the matrix *A*, the system is structurally controllable, if it is controllable for (almost) every choice of the weights on the non-zero positions.

- Pros: It allows graph theoretic analysis.
- Cons: It hides a certain kind of uncontrollability when *n* is large.

Sandro Zampieri (DEI)

Warnings on Structural Controllability

- If the graph is strongly connected network with self loops $(A_{ii} \neq 0)$ then the the system is structurally controllable from any **single node**.
- However, this seems to be in some sense unrealistic in practice.
- Need to introduce an energy aware notion of controllability.

Yan, G., Ren, J., Lai, Y. C., Lai, C. H., Li, B. Controlling complex networks: How much energy is needed?. Physical review letters, 108(21), 2012.

F Pasqualetti, S Zampieri, F Bullo, Controllability metrics, limitations and algorithms for complex networks, IEEE Transactions on Control of Network Systems 1 (1), 40-52, 2014

$${\it Energy}(u(t)):=\int_{0}^{\infty}\|u(t)\|^{2}dt$$
 ${\it Opt-Energy}(u(t))=x_{\it final}^{T}W^{-1}x_{\it final}$

where W is the controllability Gramian

$$W := \int_0^\infty e^{At} B B^T e^{A^T t} dt$$

High controllability ⇔ Large Gramian ⇔ Small control energy

Scalar metrics: $\lambda_{\min}(W), \lambda_{\max}(W), \frac{1}{n}tr(W), \frac{1}{n}tr(W^{-1}), \det(W)^{\frac{1}{n}}$

Sandro Zampieri (DEI)

Table of Contents

2 Controllability, structural controllability and control energy

3 Controllability metrics

4 Matrix non-normality

5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$

- 6 Examples
- 7 Concluding remarks

$$Opt - Energy(u(t)) = x_{final}^T W^{-1} x_{final}$$

- λ_{max}(W), tr(W) are more mathematical treatable but with a less control meaning.
- λ_{min}(W)⁻¹ is the worst case control energy for unit norm target states.
- $\frac{1}{n}tr(W^{-1})$ is the average control energy for unit norm target states.
- det(W) is the volume of the state space that is reachable by norm one inputs.

$$\lambda_{\min}(W) \leq rac{n}{tr(W^{-1})} \leq \det(W)^{1/n} \leq rac{tr(W)}{n} \leq \lambda_{\max}(W)$$

• $\lambda_{\min}(W)$ and $\frac{n}{tr(W^{-1})}$ are equivalent since

$$\frac{\lambda_{\min}(W)}{n} \leq \frac{n}{tr(W^{-1})} \leq \lambda_{\min}(W)$$

• $\lambda_{\max}(W)$ and $\frac{tr(W)}{n}$ are equivalent since

$$\frac{\lambda_{\max}(W)}{n} \leq \frac{tr(W)}{n} \leq \lambda_{\max}(W)$$

In the sequel we analize $\lambda_{\min}(W)$ and $\lambda_{\max}(W)$.

- **Pros:** Good metrics of controllability for large scale dynamical networks
- **Cons:** Difficult to relate to the network *A* and to the control nodes allocation *B*

Need to find good **proxies** of the controllability degree: Controllability increases when

- Inumber *m* of input increases
- when A approaches instability
- when A displays a "spatial" instability

Example: Line

$$\dot{x}_i(t) = -\delta x_i(t) + \alpha x_{i-1}(t)$$

where $\alpha, \delta > 0$.

$$A = \begin{bmatrix} -\delta & 0 & 0 & \cdots & 0 \\ \alpha & -\delta & 0 & \cdots & 0 \\ 0 & \alpha & -\delta & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \alpha & -\delta \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^{n \times 1},$$

As expected all controllability indices grow as $\delta \rightarrow 0$

Sandro Zampieri (DEI)

Energy-Aware Controllability

Example: Line

Example: Line

metric	asymptotic behavior
$\lambda_{\min}(W) onumber n/{ m tr}({ m W}^{-1})$	$\left(\frac{\alpha}{\alpha+2\delta}\right)^{2n}$
$\det(W)^{1/n}$	$\left(rac{lpha}{2\delta} ight)^{2n}$
$\lambda_{\sf max}(W)$ tr(W)/n	$\left(\frac{\alpha}{\delta}\right)^{2n}$ if $\alpha > \delta$ decays polynomially in <i>n</i> if $\alpha < \delta$

Example: Random geometric

(a)

Controllability estimates

Controllability is influenced by

- Number *m* of inputs
- Distance to instability of A=spectral abscissa of A

 $\rho(A) := \max\{Re[\lambda] : \lambda \text{ eigenvalues of } A\} < 0$

• Spatial instability=Degree of non-normality of A.

Table of Contents

- 1) Controllability analysis: Motivations
- 2 Controllability, structural controllability and control energy
- 3 Controllability metrics
 - Matrix non-normality
- 5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$
- 6 Examples
- 7 Concluding remarks

Matrix non-normality

A is normal if $AA^T = A^T A$. Otherwise it is non-normal.

Matrix non-normality

Characteristics of normal matrices

For normal matrices we have:

- A is diagonalizable with eigenvector matrix V having condition number k(V) = 1.
- 2 Let ρ(A) is the spectral abscissa and ω(A) := ρ (A+A^T/2) (called the numerical abscissa). Then ω(A) = ρ(A).
- The Shur form of A is diagonal.

$$U^{T}AU = \Lambda = \begin{bmatrix} \lambda_{1} & 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2} & 0 & \cdots & 0 \\ 0 & 0 & \lambda_{3} & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \lambda_{n} \end{bmatrix}$$

with U orthogonal.

Non-normality indices

We can propose 3 ways to measure the matrix non-normality:

- For diagonalizable non-normal matrices take the condition number k(V) of the eigenvector matrix V of A.
- 2 Take the gap between $\omega(A)$ and $\rho(A)$
- Take the Shur form of A and let N be its strictly lower triangular part. We can take ||N|| as a non-normality index

$$U^T A U = \Lambda + N$$

$$N = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ N_{2,1} & 0 & 0 & \cdots & 0 \\ N_{3,1} & N_{3,2} & 0 & & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ N_{n,1} & \cdots & N_{n,n-2} & N_{n,n-1} & 0 \end{bmatrix}$$

Sandro Zampieri (DEI)

Non-normality indices

Table of Contents

- 1) Controllability analysis: Motivations
- 2 Controllability, structural controllability and control energy
- 3 Controllability metrics
- 4 Matrix non-normality
- 5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$
- 6 Examples
- 7 Concluding remarks

Upper bounds on $\lambda_{\max}(W)$

$$\lambda_{\max}(W) \leq \left\{ egin{array}{c} -rac{1}{2\omega(A)} & ext{if } \omega(A) < 0 \ & \ cost \ \mu^n & ext{if } \omega(A) > 0 \end{array}
ight.$$

where the exponent is

$$\mu = \left(\frac{\|\mathbf{N}\|}{-\rho(\mathbf{A})}\right)^2$$

and $\mu > 1$ when $\omega(A) > 0$.

Upper bounds on $\lambda_{\min}(W)$

where the exponent is

$$\nu = \frac{\|A\| + \omega(A)}{\|A\| - \omega(A)}$$

and $\nu < 1$ when $\omega(A) < 0$.

Conceptual picture

parameter influencing the matrix non-normality

Sandro Zampieri (DEI)

Energy-Aware Controllability

Table of Contents

- 1) Controllability analysis: Motivations
- 2 Controllability, structural controllability and control energy
- 3 Controllability metrics
- 4 Matrix non-normality
- 5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$
- 6 Examples
 - 7 Concluding remarks

Example: line

Example: random geometric graph

Example: line

Example: random geometric graph

Other upper bounds

Upper bounds involving k(V) non-normality index

$$\lambda_{\max}(W) \leq \frac{k(V)^2}{-2\rho(A)} \qquad \qquad \lambda_{\min}(W) \leq \frac{k(V)^4}{2a} \nu^{\frac{n}{m}-1}$$

where the exponent is

$$u = \left(rac{\sqrt{b}-\sqrt{a}}{\sqrt{b}+\sqrt{a}}
ight)^2$$

Table of Contents

- 1) Controllability analysis: Motivations
- 2 Controllability, structural controllability and control energy
- 3 Controllability metrics
- 4 Matrix non-normality
- 5 Upper bounds on $\lambda_{\max}(W)$ and on $\lambda_{\min}(W)$
 - 6 Examples
 - Concluding remarks

Concluding remarks

- Take home message: Controllability improves when we add control nodes, we get close to instability, we have a non-normal=anisotropic network.
- A general network wise characterization of non-normality is quite elusive.
- Finding lower bounds is much harder because it involves the choice of a strategy for input nodes positioning.
- For the single input case we have nice estimates of the exponential decay rate for the minimum eigenvalue and the determinant indices.
- More can be said for cycle free (tree) networks.